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Preface  

The two volume set "Lectures on QCD" provides an introductory overview of 
Quantum Chromodynamics, the theory of strong interactions. In a series of ar- 
ticles, the fundamentals of QCD are discussed and significant areas of applica- 
tion are described. Emphasis is put on recent developments. The field-theoretic 
basis of QCD is the focus of the first volume. The topics discussed include 
lattice gauge theories, anomalies, finite temperature field theories, sum-rules, 
the Skyrme model, and supersymmetric QCD. Applications of QCD to the 
phenomenology of strong interactions form the subject of the second volume. 
There, investigations of deep inelastic lepton-nucleon scattering, of high energy 
hadronic reactions and studies of the quark-glnon plasma in relativistic heavy 
ion collisions are presented. 

These articles are based on lectures delivered by internationally well known 
experts on the occasion of a series of workshops organised by the "Graduierten- 
kolleg on Strong Interaction Physics" of the Universities of Erlangen-N/irnberg 
and Regensburg in the years 1992-1995. The workshops were held at "Kloster 
Banz". Kloster Banz is a former monastery overlooking the valley of the river 
Main and still serves, for some days of the year, as the stage where certain canons 
and orthodoxies are vigorously formulated. 

Inspired by the atmosphere of the site, the workshops were set up with the 
aim of introducing novices in the field to the basics of QCD. Accordingly, the 
character of the lectures was pedagogical rather than technical. With the or- 
ganisation of these workshops we have attempted to establish a new form in 
graduate education. Graduate students of the "Graduiertenkolleg" constituted 
a large fraction of the audience. They have worked out these articles on QCD in 
collaboration with the lecturers. 

Thanks are due to Jutta Geithner and Achim Oppelt for help in the prepa- 
ration of these proceedings. The support of the "Graduiertenkolleg" by the 
Deutsche Forschungsgemeinschaft was instrumental in this endeavor and is grate- 
fully acknowledged. 

Erlangen, August 1997 F. Lenz 
H. W. Grieflhammer 
D. Stoll 
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H i g h  E n e r g y  Col l i s ions  
and  N o n p e r t u r b a t i v e  QCD* 

O. Nachtmann 

Institut fiir Theoretische Physik, Universitgt Heidelberg, Philosophenweg 16, 
D-69120 Heidelberg, Germany 

A b s t r a c t .  We discuss various ideas on the nonperturbative vacuum structure in QCD. 
The stochastic vacuum model of Dosch and Simonov is presented in some detail. We 
show how this model produces confinement. The model incorporates the idea of the 
QCD vacuum acting like a dual superconductor due to an effective chromomagnetic 
monopole condensate. We turn then to high energy, small momentum transfer hadron- 
hadron scattering. A field-theoretic formalism to treat these reactions is developed, 
where the basic quantities governing the scattering amplitudes are correlation func- 
tions of light-like Wegner-Wilson lines and loops. The evaluation of these correlation 
functions with the help of the Minkowskian version of the stochastic vacuum model 
is discussed. A further surprising manifestation of the nontrivial vacuum structure in 
QCD may be the production of anomalous soft photons in hadron-hadron collisions. 
We interpret these photons as being due to "synchrotron radiation from the vacuum". 
A duality argument leads us from there to the expectation of anomalous pieces pro- 
portional to (Q2)I/B in the electric form factors of the nucleons for small Q2. Finally 
we sketch the idea that in the Drell-Yan reaction, where a quark-antiquark pair anni- 
hilates with the production of a lepton pair, a "chromodynamic Sokolov-Ternov effect" 
may be at work. This leads to a spin correlation of the qq pair, observable through the 
angular distribution of the lepton pair. 

1 I n t r o d u c t i o n  

In these lectures I would like to review some ideas on the way nonperturbat ive 
QCD may manifest itself in high energy collisions. Thus we will be concerned 
with strong interactions where we claim to know the fundamental  Lagrangian 
for a long t ime now [1]: 

cQco(x) = + - (1.1) 
q 

Here q(x) are the quark fields for the various quark flavours (q = u,d,  s, c, b, t) 
with masses mq. We denote the gluon potentials by G~(x) (a = 1, ..., 8) and the 
gluon field strengths by 

a ~ ,  (x) = o ~ a ;  (x) - o~a~ (x) - gAbcG~ ( x ) a ;  (x), (1.2) 

* Grown out of lectures presented at the workshop "Topics in Field Theory" organised 
by the Graduiertenkolleg Erlangen-P~egensburg, held on October 12th-14thi 1993 in 
Kloster Banz, Germany 



2 O. Nachtmann 

where g is the strong coupling constant and fabc are the structure constants of 
SU(3). The covariant derivative of the quark fields is 

Dxq(x) = (Oh + igG~ + )q(x), (1.3) 

with ha the Gell-Mann matrizes of the SU(3) group. The gluon potential and 
field strength matrizes are defined as 

c~(x)  : = c ~ , ( ~ ) ~ ,  

G.xt,(x) : = Gip(x)~. (1.4) 

The Lagrangian (1.1) is invariant under SU(3) gauge transformations. Let x -+ 
U(x) be an arbitrary matrix function, where for fixed x the U(x) are SU(3) 
matrices: 

U(x)ut(x) = 1, 
detU(x) = 1. (1.5) 

With the transformation laws: 

we find 

q(~) + u(~)q(x), 

cA (~) + g (~)c~  (x)v*(x) - U(x)Oj, U t 
y 

and invariance of •QCD: 

U~p(x) ~ U(x)G~p(x)Ut(x), 

(1.6) 

(1.7) 

£QCD(X) -* Z:QCD(X). (1.8) 

If we want to derive results from the Lagraugian (1.1), we face problems, the 
most notable being that £QCD is expressed in terms of quark and gluon fields 
whose quanta have not been observed as free particles. In the real world we 
observe only hadrons, namely colourless objects; quark and gluons are perma- 
nently confined. Nevertheless it has been possible in some cases to derive first 
principle results which can be compared with experiment, starting from/:QCD 
(1.1). These are in essence the following: 

(1) Pure short-distance phenomena: Due to asymptotic freedom [2] the QCD 
coupling constant becomes small in this regime and one can make reliable pertur- 
bative calculations. Examples of pure short distance processes are for instance 
the total cross section for electron-positron annihilation into hadrons and the 
total hadronic decay rate of the Z-bosom 

(2) Pure long-distance phenomena: Here one is in the nonperturbative regime 
of QCD and one has to use numerical methods to obtain first principle results 
from £QCD, or rather from the lattice version of £:QCD introduced by Wilson 
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[3]. Today, Monte Carlo simulations of lattice QCD are a big industry among 
theorists. Typical  quantities one can calculate in this way are hadron masses and 
other low energy hadron properties. (For an up-to-date account of these methods  
cf. [4]). 

There is a third regime of hadronic phenomena,  hadron-hadron collisions, 
which are - apar t  from very low energy coll isions- neither pure long-distance nor 
pure short-distance phenomena. Thus, none of the above-mentioned theoretical  
methods apply directly. Traditionally one classifies high-energy hadron-hadron 
collisions as "hard" and "soft" ones: 

(3) High energy hadron-hadron collisions: 
(a) hard collisions, 
(b) soft collisions. 

A typical hard reaction is the Drell-Yan process, e.g. 

7r- + N --+ 7 * + X  

¢-~ e+e - (1.9) 

where l = e, #. All energies and momentum transfers are assumed to be large. 
However, the masses of the n -  and N in the initial state stay fixed and thus we 
are not dealing with a pure short distance phenomenon. 

T" 

N 

Fig. 1. The lowest order diagram for the Drel1-Yan reaction (1.9) in the QCD improved 
patton model. 

In the reaction (1.9) we claim to see directly the fundamental  quanta  of the 
theory, the patrons, i.e. the quarks and gluons, in action (cf. Fig. 1). In the usual 
theoretical framework for hard reactions,  the QCD improved par ton  model (cf. 
e.g. [5]), one describes the reaction of the partons, in the Drell-Yan case the qq 
annihilation into a virtual photon, by per turbat ion theory. This should be reli- 
able, since the par ton process involves only high energies and high momen tum 
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transfers. All the long distance physics due to the bound state nature of the 
hadrons is then lumped into patton distribution functions of the participating 
hadrons. This is called the factorization hypothesis, which after early investiga- 
tions of soft initial and final state interactions [6] was formulated and studied 
in low orders of QCD perturbation theory in [7]. Subsequently, great theoretical 
effort has gone into proving factorization in the framework of QCD perturbation 
theory [8]-[10]. The result seems to be that factorization is most probably correct 
there (cf. the discussion in [11]). However, it is legitimate to ask if factorization 
is respected also by nonperturbative effects. To my knowledge this question was 
first asked in [12] -[14]. In Sect. 4 of these lectures I will come back to this ques- 
tion and will argue that there may be evidence for a breakdown of factorization 
in the Drell-Yan reaction due to QCD vacuum effects. 

Let us consider now soft high energy collisions. A typical reaction in this 
class is proton-proton elastic scattering: 

p + p ---+ p + p (1.10) 

at c.m. energies Ecm = X/~ >~ 5GeV say and small momentum transfers ~ / ~  = 
Iql <~ 1GeV. Here we have two scales, one staying finite, one going to infinity: 

Ecru --4 cx), 

Iql <~ 1GeV. (1.11) 

Thus, none of the above mentioned calculational methods is directly applicable. 
Indeed, most theoretical papers dealing with reactions in this class develop and 
apply models which are partly older than QCD, partly QCD "motivated". Let 
me list some models for hadron-hadron elastic scattering at high energies: 

geometric [15], 
eikonal [16], 
additive quark model [17], 
Regge poles [18], 
topological expansions and strings [19], 
valons [20], 
leading log summations [21], 
two-gluon exchange [22], 
the Donnachie-Landshoff model for the "soft Pomeron" [23]. 
It would be a forbidding task to collect all references in this field. The ref- 

erences given above should thus only be considered as representative ones. In 
addition I would like to mention the inspiring general field theoretic considera- 
tions for high energy scattering and particle production by Heisenberg [24] and 
the impressive work by Cheng and Wu on high energy behaviour in field theories 
in the framework of perturbative calculations [25]. 

I will now argue that the theoretical description of measurable quantities of 
soft high energy reactions like the total cross sections should involve in an essen- 
tial way nonperturbative QCD. To see this, consider massless pure gluon theory 
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where all "hadrons" are massive glueballs. Then we know from the renormaliza- 
tion group analysis tha t  the glueball masses must behave as 

mglueball  (X Me -c/g2(M) (1.12) 

for M --~ c~, i.e. for g(M) ~ O, due to  asymptot ic  freedom. Here M is the 
renormalization scale, g(M) is the QCD coupling strength at this scale and c is 
a constant: 

g2(M) 12 
4~r 2 33 ln(M2/A 2) 

87r 2 
C ~  

1 1 '  

for M ~ c~, 

A : QCD scale parameter.  (1.13) 

Masses in massless Yang-Mills theory are a purely nonper turbat ive  phe- 
nomenon, due to "dimensional t ransmutat ion" .  Scattering of glueball-hadrons 
in massless pure gluon theory should look very similar to scattering of hadrons 
in the real world, with finite total  cross sections, amplitudes with analytic  t de- 
pendence etc. At least, this would be my expectation. If the total  cross section 
atot has a finite limit as s --+ c~ we must have from the same renormalization 
group arguments: 

lim O'tot(S ) (X M-2e 2c/g2(M) (1.14) 
8--+OO 

for g(M) ~ O. In this case, the total  cross sections in pure gluon theory  are also 
nonperturbat ive objects! It is easy to see that  this conclusion is not changed if 
atot(S) has a logarithmic behaviour with s for s --~ oo, e.g. 

atot(S) --~ const × (logs) 2. (1.15) 

I would then expect tha t  also in full QCD total  cross sections are nonper turbat ive  
objects, at least as far as hadrons made out of light quarks are concerned. 

Some time ago P.V. Landshoff and myself s tarted to think about  a possible 
connection between the nontrivial vacuum structure of QCD - a typical  non- 
perturbat ive phenomenon - and soft high energy reactions [26]. In the following 
I will first review some common folklore on the QCD vacuum and discuss in 
more detail the so-called "stochastic vacuum model". I will then sketch possible 
consequences of these ideas for high energy collisions. 

2 T h e  Q C D  V a c u u m  

According to current theoretical prejudice the vacuum state in QCD has a very 
complicated structure [27]-[37]. It was first noted by Savvidy [27] tha t  by intro- 
ducing a constant chromomagnetic field 

B a = nyaB,  (a = 1 , . . . , 8 ) ,  (2.1) 
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into the perturbative vacuum one can lower the vacuum-energy density e(B). 
Here n and ~ are constant unit vectors in ordinary and colour space. The result 
of his one-loop calculation was 

~°g2 B 2 [ln B 

where g is the strong coupling constant, M is again the renormalization scale, 
and ~0 is given by the lowest order term in the Callan-Symanzik E-function: 

M d g ( M )  - - . ~ ( g ) = -  8o g34_ 
dM 16~r 2 "'" 

For 3 colours and f flavours: 

(2.3) 

2 
/30 = 11 - ~f.  (2.4) 

~(B) 

B 

Fig. 2. The schematic behaviour of the vacuum energy density e(B) as function of a 
constant chromomagnetic field B according to Savvidy's calculation (2.2). 

Thus, as long as we have asymptotic freedom, i.e. for f ~ 16, the energy 
density E(B) looks as indicated schematically in Fig. 2 and has its minimum 
for B = Bvac ~ 0. Therefore, we should expect the QCD-vacuum to develop 
spontaneously a chromomagnetic field, the situation being similar to that in a 
ferromagnet below the Curie temperature where we have spontaneous magneti- 
zation. 

Of course, the vacuum state in QCD has to be relativistically invariant and 
cannot have a preferred direction in ordinary space and colour space. What has 
been considered [33] are states composed of domains with random orientation 
of the gluon-field strength (Fig. 3). This is analogous to Weiss domains in a 
ferromagnet. The vacuum state should then be a suitable linear superposition of 
states with various domains and orientation of the fields inside the domains. This 
implies that the orientation of the fields in the domains as well as the boundaries 
of the domains will fluctuate. 



y~ 

High Energy Collisions and Nonperturbative QCD 7 

\ \ / . , , /  

Fig. 3. A "snapshot" of the QCD vacuum showing a domain structure of spontaneously 
created chromomagnetic fieMs. 

A very detailed picture for the QCD vacuum along these lines has been 
developed in ref. [33]. I cannot refrain from comparing this modern picture of 
the QCD vacuum (Fig. 4a) with the "modern picture" of the ether developed by 
Maxwell more than 100 years ago [38] (Fig. 4b). The analogy is quite striking and 
suggests to me that with time passing on we may also be able to find simpler 
views on the QCD vacuum. Remember that Einstein made great progress by 
eliminating the ether from electrodynamics. In the following we will adopt the 
picture of the QCD vacuum as developed in refs. [27]-[34],[36] and outlined above 
as a working hypothesis. 

Let me now come to the values for the field strengths E a and B a in the 
vacuum. These must also be determined by A, the QCD scale parameter, the 
only dimensional parameter in QCD if we disregard the quark masses. Therefore, 
we must have on dimensional grounds for the renormalization group invariant 
quantity (gB) 2 

(gB) 2 c< A s. (2.5) 

But we have much more detailed information on the values of these field strengths 
due to the work of Shifman, Vainshtein, and Zakharov (SVZ), who introduced the 
gluon condensate and first estimated its value using sum rules for charmonium 
states [30]: 

g2 g2 
< G  (x)G" a(x)I0 > =- < 0f2- ( B ° ( x ) B ° ( x )  - E ° ( x ) E ° ( x ) ) l 0  > 

--- G2 = (2.4 :k 1.1). 10-2GeV ~ 

---- (335 - 430MeV) 4. (2.6) 
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Fig. 4. The QCD vacuum according to Ambjcrn and Olesen [33] (a). The ether ac- 
cording to Maxwell [38] (b). 

Here we quote numerical values as given in the review [39]. A simple analysis 
shows that  this, implies 

< Olg2B"(x)B"(x)IO > =  - < Olg2Ea(x)Ea(x)IO > =  ~r2G2 ~ (700MeV) 4. (2.7) 

To prove (2.7) we note that  Lorentz and parity invariance require the vacuum 
expectation value of the uncontracted product of two gluon field strengths to be 
of the form 

g~ 
< 01~-~5"2 G;~(x)G~(x)[0  > =  (g~,ogv,~ - g~,ag~,o)Sab~6 (2.8) 

where G2 is the same constant as in (2.6). Taking appropriate contractions leads 
to (2.6) and (2.7). 

We find tha t  < 0[Ba(x) Ba(x)10 > is positive, < 01E~(x) Ea(x)}0 > negative! 
This can happen because we are really considering products of field operators, 
normal-ordered with respect to the perturbative vacuum. The interpretation of 
(2.7) is, therefore, that  the B-field fluctuates with bigger amplitude, the E-field 
with smaller amplitude than in the perturbative vacuum state. 

What  about the size a of the colour domains and the fluctuation times T of 
the colour fields? On dimensional grounds we must have 

a ~ ~- ,,~ A -1. (2.9) 

A detailed model for the QCD vacuum incorporating the gluon condensate 
idea and a fall-off of the correlation of two field strengths with distance was 
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proposed in [40]: the "stochastic vacuum model" (SVM). In the following we 
will discuss the basic assumptions of the model and then apply it to derive the 
area law for the Wegner-Wilson loop, i.e. confinement of static quarks. For the 
rest of this section we will work in Euclidean space-time. To accomplish the 
analytic continuation from Minkowski to Euclidean space-time we have to make 
the following replacements for x x and G x (cf. (1.4)): 

X 0 -+ - iX4 ,  

x --~ X, 

G o ~ i94, 

G --+ -G.  (2.10) 

Here X = (X, X4) denotes an Euclidean space-time point and Ca (a = 1, ..., 4) 
the Euclidean gluon potential. With (2.10) we get 

(x . y) --+ - ( X  . Y)  = - X a Y a ,  

- i g  f dxUGu(x) --~ - i g  / dX~Ga(X), 

G °j -~ --iG4j, 

G jk -+ Gjk, (2.11) 

w h e r e l < j , k < 3 ,  l_<a , f~_<4and  

G,~O = Oc~GO - OOGa + ig[G,~, gO] (2.12) 

is the Euclidean gluon field strength tensor. 

2.1 C o n n e c t o r s  

Consider classical gluon fields in Euclidean space-time. Let X, Y be two points 
there and Cx a curve from X to Y (Fig. 5). 

Cx Y 

X' 

Fig. 5. Points X, X', Y in Euclidean space time and curves Cx, Cx, running from X 
to Y and X' to Y, respectively. 

We define the connector, the non-abelian generalization of the "Schwinger 
string" [41] of QED as 

V ( Y , X ;  Cx)  = e{exp[ - ig  f_ d Z ~  (Z)]}. (2.13) 
x 
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where P means path ordering. The connector can be obtained as solution of a 
differential equation. Let 

-+ Z(r) ,  

T1 <_ T < T2, 
Z(T1) = X, Z(r2) = Y, (2.14) 

be a parametrization of Cx. Consider the differential equation for a 3 x 3 matr ix  
function V(T): 

v (T) = -ig  o(z (r))v (2.15) 

with the boundary condition 
V(T1) = 11. (2.16) 

The solution of (2.15), (2.16) gives for T = vu just the connector (2.13). 
Under a gauge transformation 

U(X)G,~(X)Ut(X) - ~U(X)OaUt(X) (2.17) 6~(x) --} 

where U(X) E SU(3), we have 

V(Y, X; Cx) --+ U(Y)V(Y,  X; Cx)U -1 (X). (2.18) 

The connector can be used to "shift" various objects from one space-time 
point to another in a gauge-covariant way. We define for instance the field 
strength tensor shifted from X to Y along Cx as 

¢~(Y,X;Cx) := V(Y,X;Cx)Ga~(X)V-I(Y,X;Cx). (2.19) 

Under a gauge transformation ¢a~(Y,X; Cx) transforms like a field strength 
tensor at Y: 

¢af~(Y, X; Cx ) -+ U (Y)~af3 (Y, X; Cx )U -I (Y). (2.20) 

Connectors can, of course, be defined for arbitrary SU(3) representations, not 
only for the fundamental one used in (2.13). Let Ta(a -- 1, ...8) be the generators 
of SU(3) in some arbitrary unitary representation R where 

[Ta, Tb] = i fi, bcTc. (2.21) 

We define the connector for this representation by: 

VR(Y,X;Cx)  :-- P e x p [ - i g f  dZ,~Ga(Z)Ta]. (2.22) 
J c  X 

We list some basic properties of connectors: 
(i) For 2 adjoining curves C1, C2 (Fig. 6), the connectors are multiplied: 

Vn(X3,X1;C2 + C1) = Va(X3,X2;C:).Vn(X2,X1;C1). (2.23) 
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(ii) Let C be a curve from X to Y and C the same curve but oriented in 
inverse direction, running from Y to X (Fig. 6). Then 

VR(X, Y; C')VR(Y, X; e)  = 11, (2.24) 

v~(Y, x ;  c)  --- vR(x,  Y; c'). (2.25) 

The product of the connectors for the path and the reverse path is equal to the 
unit matrix. The reversal of the path is equivalent to hermitian conjugation. 

X2 

C I ~ - ~ X 3  

Xl 

Cf j ~ ~ ° Y  

S 
x 

Fig. 6. Curves in Euclidean space time: C1 going from X1 to X~, C2 from X2 to X3, 
C from X to Y, and C from Y to X. 

We leave the proof of (2.23)-(2.25) as an exercise for the reader. 

2.2 T h e  N o n - A b e l i a n  S t o k e s  T h e o r e m  

In this subsection we will derive the non-abelian generalization of the Stokes 
theorem [42]. Let us consider a surface S in Euclidean space time with boundary 
C = OS. Let X be some point on C as indicated in Fig. 7 and consider the 
connector (2.22) from X back to X along C: 

VR(X, X; C) = P exp[-ig / dZ,~G'~,(Z)T,~]. (2.26) 
Jc  

The problem is to transform this line integral into a surface integrM. 
We start by considering a point Z1 in S and a small plaquette formed by 

curves C1, .., C4 where one corner point is Z, (Fig. 7). We choose a coordinate 
system on S in the neighbourhood of ZI: 

(u, ,~) -~ Z(u, v) (2.27) 
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Fig. 7. A surface S with boundary C = OS. A p/aquette with corner points Z1..., Z4 
and boundary formed by lines u = const, v = const. 

such that 

Zl = z (0 ,  0), 

z2 = z(z~u, o), 
z3 = Z(Au, Av),  

Z4 = Z(0, Av) (2.28) 

and the curves C1, C3(C2, C4) correspond to lines v=const. (u=const.). The ma- 
trix representing the line integrM around the small plaquette is 

UR(Au,  Av)  := VR(C4)VR(C3)VR(C2)VR(C1). (2.29) 

We want to make a Taylor expansion of UR(Au,  Av)  in Au and Av. From (2.24) 
we find immediately that 

UR(O, Av)  = Vn(  Au,  0) = II. (2.30) 

Thus the lowest order term in the expansion after the zeroth order is proportional 
to A u .  Av and we get easily: 

• 1 a 
UR(Au,  Av)  = ]1 -- * g s A a , ~ G , ~ ( Z 1 ) T a  + O ( A u 2 A v ,  AuAv2) ,  (2.31) 

where 
Aa,~z = A u A v  O( Za, Z/~) . (2.32) 

O(u,v) 
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/ 
f 

z,, 

Y 
S 

OS 

\ 
\ 

J 
J 

t j 

X 

Fig. 8. A reference point Y on S and the fan-type net with center Y spanned over S. 

In the limit Llu, Llv -4 0 Aaa3 becomes the surface element dcr,~ of the plaque- 
tte. 

The next step is to choose an arbi t rary  point Y, the reference point, on the 
surface S and to draw a fan-type net on S as a spider would do (Fig. 8). The  
system of curves of the net consists of the curve C x  running from X to Y, then 
Czl from Y to Z1, then around a small plaquette at Z1, back to Y along Czl 
and so on. The final curve is Cx from Y to X. Apart  from the initial and final 
curves C x  and C'x we have a system of plaquettes with "handles" connecting 
them to Y. Wi th  the help of (2.23) -(2.25) we see tha t  the connector along the 
whole net is equivalent to the original connector (2.26). 

Vn ( X , X;  C) = VR ( X , Y;  C x ) • product  of connectors 

for the plaquettes with handles • VR(Y, X;  Cx) .  (2.33) 

Let us consider one plaquette with handle, for instance the one at Zn in Fig. 8. 
For this contribution to (2.33) we get 

VR(Y, Z,~; Cz,, )Vn (plaquette at Zn)VR(Zn,  Y;  Cz,, ) 

] = yR(Y,Z~;Cz~)  ~ ~g-~ a,~3~,,~(Z,~)To + . . . j  Vn(Zn,  Y; Og . )  

• 1 ^a 
= ]l - zg~Aa,~oG,~3(Y, Zn; Cz,~)Ta + . . . .  (2.34) 
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Here we use (2.31) and the shifted field strengths as defined in (2.19). We leave 
it as an excercise to the reader to show tha t  (2.19) implies 

a . ^ a  y ,  Vn(Y, Zn;Cz.)g~(Z~)TaVn(Z~,Y, Cz.) = G ( ,Z~;Cz.)Ta (2.35) 

for arbi t rary representation R of SU(3).  
Inserting (2.34) in (2.33) and summing up the contribution of all plaquettes 

with handles, where we have of course to respect the ordering, we get in the 
limit tha t  the net is infinitesimally fine: 

VR(X, X; C) = VR(X, Y; Cx)" 

Here P denotes the ordering on the whole surface as implied by the net. Usually 
one takes the trace in (2.36) which leads with (2.24) to 

ri'r I/R(X, X; 6') = Tr P exp - i  d a ~ ( Y ,  Z; Cz)Ta • (2.37) 

This is the desired non-abelian version of Stokes' theorem. We leave it to the 
reader as an exercise to show that  for the abelian case (2.37) reduces to  the 
conventional Stokes theorem. 

2.3 The Cumulant Expansion 

As a last mathematical  tool for making calculations with the SVM we discuss 
the cumulant expansion [43]. Consider functions 

--~ S (v )  (2.38) 

on the interval O < T < 1 where B ( r )  are quadratic matrices. We assume that  
an averaging procedure over products  of the functions B(.) is defined: 

E( B(T1) ), E( B(T1)B(T2) ), .... 

We consider first the case that  all averages E(.)  are c numbers and tha t  

S(1)  = 1. (2.39) 

Let us consider the expectation value of the ~--ordered exponential: 

f(t) := E(Pexp [t fold~-B(r)]), (2.40) 

where t E C. The cumulant expansion asserts tha t  In f ( t )  can be expanded as 

l n  / ( t l  = a n . . .  d T n K n ( r l ,  . . . , r n ) ,  (2.41) 
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where the n- th  cumulant Kn (TI,.. •, Tn) is a symmetric function of its arguments.  
A frequently used notat ion for the Kn is: 

g n ( T 1 , . . . ,  "rn) =-- ( (B(T1) . . .  B(rn))) .  (2.42) 

To prove (2.41) we proceed as follows. Expanding in powers of t on the r.h.s. 
of (2.40) we get 

f (  t ) = 1+ ~ tnBn (2.43) 
n! 

n : l  

where 

fo fo 1 Bn = dT1.., d'rnE(P(B(T1)... B(rn))). (2.44) 

Now we expand l n f ( t ) :  
o o  

In f(t) 
t n 

= ~.w/Cn, (2.45) 
rim1 

where the expansion coefficients/Cn are obtained from: 

f ( t )  = exp(ln f(t)),  

1 + ~ B ~  = exp ~ .Kn • (2.46) 
r~=l n----1 

From this we obtain the K:. as solution of the following system of equations: 

BI --/(:I, 

B2 =/C2 + K:~, 
3 

B4 : ~4 + 2(~3~:~ + ~1~3) + 3~:~ + 2 ( ~  + ~1~2~:1 + ~ )  + ~, 
. . . .  (2.47) 

Clearly, this system can be inverted and we get/Cn as sum of monomiMs of the 
form 

B~ 1 • B/2 . . .  B/~, (2.48) 

where 
k 

ij = n. (2.49) 
j = l  

Using (2.44), every monomial (2.48) can be writ ten as n-fold integral over 
T1,...,T,~ with 0 < ~-j < 1 (j = 1 , . . . , n ) .  Since the integration domain is 
symmetric under arbi t rary permutat ions of T1,. . .  ,~-n we can symmetrize the 
integrand completely. In this way we get 

!c,~ = a n . . .  d ~ - , g , ( n , .  . . , r n ) ,  (2.5O) 
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where Kn is a totally symmetric function of its arguments. Inserting (2.50) in 
(2.45) we get the cumulant expansion (2.41), q.e.d. Explicitly we find for the 
first few cumulants: 

K1 (1) = E(B(1)),  

K2(1, 2) = E(P(B(1)B(2))) 

-1E(B(1))E(B(2)) - 2E(B(2))E(B(1)), 

K3(1, 2, 3) = E(P(B(1)B(2)B(3))) 

- I  [E(P(B(1)B(2) ) )E( B(3) ) 

+ E( B(1) )E(P( B(2)B(3) ) ) 
+cycl. perm. ] 

+~[E(B(1))E(B(2))E(B(3)) + perm. ], 

. . . .  (2.51) 

Here we write as a shorthand notation KI(1) - KI(T1), B(1) -- B(T1) etc. 
The cumulant expansion (2.41) has the so-called "cluster" property: Let us 

assume that  the expectation values of the P-ordered products factorize 

1 
E(P(B(1)  . . .  Bin)) ) = ~ {E(B(1 ) ) . . .  E(B(n)) + perm.} (2.52) 

for all n > 2 and all 
[Ti -- Tj] > Tmi n (i ~ j ) ,  (2.53) 

We can then show that  the cumulants for n > 2 vanish: 

Kn(1,. . . ,n) = O, (n >_ 2) (2.54) 

if the T~ satisfy (2.53). 
To prove (2.54) we show first tha t  it is true for n = 2. Indeed, from (2.51) 

and (2.52) we get for IT1 -- r2[ >_ Train 

g2(1, 2) = I{E(B(1))E(B(2)) + perm.} 

-1E(B(1)  )E(B(2) ) - 1E(B(2) )E(B(1) ) 

= o. (2.55) 

Now we proceed by mathematical induction. Assume that (2.54) has been shown 
for all k with 2 < k < n - I. We have from (2.47): 

K , ( 1 , . . .  ,n) -- E ( P ( B ( 1 ) . . .  B(n))) 

l i [K1 (1) . . .  g l ( n )  + perm.] 

+ [symmetrized products of cumulants K k ( 1 , . . . ,  k) 

with 1 < k < n - 1] (2.56) 
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but  at least one factor with k k 2. With (2.52) we get now immediately 
K , ( 1 , . . .  ,n)  = 0 in the region defined by (2.53), q.e.d. 

Up to now we have assumed the expectat ion values E(-) to  be c-numbers. In 
this case many of the formulae (2.47) - (2.56) can be simplified by using 

E(B(1))E(B(2)) = E(B(2))E(B(1)),  
etc. (2.57) 

We have, on purpose, not  used such commutat iv i ty  relations, since we axe now 
going to generalize the cumulant expansion to the case where 

E(B(1)) ,  E(B(1)B(2)) , . . .  (2.58) 

are themselves quadratic matr ix  valued expectat ion values with 

E(II) = 11. (2.59) 

Then we have, of course, in general, no more the commutat iv i ty  relations (2.57). 
But all formulae (2.40) - (2.56) are writ ten in such a way that  they remain true 
also for the case of matr ix  valued expectat ion values E(.) .  

2.4 The  Bas ic  A s s u m p t i o n s  o f  the  S tochas t i c  V a c u u m  M o d e l  

The basic object of the SVM is the correlator of two field strengths shifted to a 
common reference point. Let X, X' be two points in Euclidean space-time, Y a 
reference point and Cx,  Cx, curves from X to Y and X ~ to Y, respectively (Fig. 
5). We consider the shifted field strengths as defined in (2.19) and the vacuum 
expectat ion value of their product  in the sense of Euclidean QFT:  

~a X ~b 1]) 1 5 ° b F . ~ ( X , X ' , Y ; C x , C x , ) .  = :  

(2.60) 
Here (2.20) and colour conservation allow us to write the r.h.s, of (2.60) propor-  
tional to 5 ab. It  is easy to see that  Ft,~,p~ depends only on X, X s and the curve 
Cx + Cx' connecting them; i.e. the reference point  Y can be freely shifted on 
the connecting curve. In the SVM one makes now the strong assumption tha t  
the correlator (2.60) even does not depend on the connecting curve at all: 

- A s s u m p t i o n  1: Fu~p~ is independent of the reference point Y and of the 
curves Gx and Cx,. 

Translational, 0 (4) -  and pari ty invaxiance require then the correlator (2.60) to 
be of the following form: 

F~,~,,~ = Fuvp,~(Z ) = 2~G2{ (5~,pSv~ - 5u,~Svp) a D ( - Z  2) (2.61) 

1 0 0 (ZoS~, ~ _ Z,~5,,o)'I(I_~)D,(_Z2)I.] ~ 
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Here Z =' X - X',  G2 is the gluon condensate, D, D1 are invaxiant functions 
normalized to 

D(0) = O1(0) = 1 (2.62) 

and a is a parameter measuring the non-abelian character of the correlator. 
Indeed, if we consider an abelian theory we have to replace the gluon field 

strengths Guy by abelian field strengths ~'uv, which satisfy the homogenous 
Maxwell equation 

cu~,p,~O~,Y:p~(X) = 0, (2.63) 

if there are no magnetic monopoles present. It is easy to see that this implies 
= 0 in (2.61). Thus, in an abelian theory, the D-term in (2.61) is absent 

without magnetic monopoles but would be non-zero if the vacuum contained a 
magnetic monopole condensate. In the non-abelian theory the D-term has no 
reason to vanish. In fact, we will see that it dominates over the D1-term. The 
abelian analogy suggests an interpretation of the D-term as being due to an 
effective chromomagnetic monopole condensate in the QCD vacuum. 

Two further assumptions are made in the SVM: 

- A s s u m p t i o n  2: The correlation functions D ( - Z  2) and D I ( - Z  2) fall off 
rapidly for Z 2 ~ c~. There exists a characteristic finite correlation length a, 
which we define as 

/; a := dZ D(-Z2). (2.64) 

A typical ansatz for the function D, incorporating Assumption 2, is as follows: 

27 f [K D ( - Z  2) 
64 J L + k s a ]  j ' 

which leads to 

(2.65) 

D(-Z') c< exp ( 31rlZI)8a for Z 2 -4 oo. (2.66) 

The function D1 is chosen such that 

which leads to 

(4 + Z~ o-~) DI(-Z2) = 4 D ( - Z  2) (2.67) 

Z 2 

DI( -Z2)  = (Z2)-2 ~0 dv2vD(-v). (2.68) 

With (2.67) the contracted field strength correlator has the form (cf. (2.61): 

Fuv,v = 1G2D(-Z2). (2.69) 
Z 
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The ansatz (2.65), (2.67) can be compared to a lattice gauge theory calcu- 
lation of the gluon field strength correlator [44] in order to fix the parameters.  
One finds (cf. [44], [45] and Fig. 9): 

a = 0.35 fro, 

= 0.74, 

G:  = (496 MeV) 4, (2.70) 

with an educated guess for the error of ~ 10%. Of course, from Fig. 9 we get only 
the product ~. G2. These quantities are obtained separately by measuring on the 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

L 

I 
0 0.2 0.4 0.6 0.8 1 1.2 

Fig. 9. The correlator function 41r2 ~ G 2 D ( -  Z 2) (cf. (2.61)) as function of  [Z[. The 
dashed line is the lattice result o[[44] with the arrows indicating the range where these 
results are considered reliable. The solid tine corresponds to the ansatz (2.65) with 
a : 0.35 fm (cf. Fig. 5.1 of  [45]). 

lattice several components of the correlator (2.60). The value for G2 in (2.70) 
from the lattice calculations is somewhat larger than from phenomenology. This 
can be understood as follows. The lattice calculations of [44] are for the pure 
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gluon theory. In the real world light quarks are present. Their  effect is est imated 
to reduce the value of G2 substantially [46]. 

We note tha t  the correlation length is smaller, albeit not much smaller than 
a typical radius R of a light hadron (cf. e.g. [47], [48], [49],[50]): 

R ,~ 0.7 - 1 fin. (2.71) 

Still 

a 2 / R  2 ~ 0.2 - 0.3 (2.72) 

is a reasonably small number and this will be impor tant  for us in the following. 
We come now to the third Assumption made in the SVM: 

- A s s u m p t i o n  3: Factorization of higher point gluon field strength correla- 
tors. 

In detail Assumption 3 reads as follows (cf. [45]): 
All expectat ion values of an odd number of products of shifted field strengths 

vanish: 

(¢(1). . .¢(2n + 1)) = 0 for n = 0, 1,2,.. . .  (2.73) 

Here we set as shorthand 

^a, (E X~; Cx,). f i ( i )  = (2.74) 

For an even number of shifted field strengths we set in the SVM: 

(¢(1). . .¢(2n)) = 

all pairings 

(il , j l) . . .( i , , j ,J (2.75) 

where n = 1, 2, . . . .  
We note tha t  (~(1)) must vanish due to colour conservation since the QCD 

vacuum has no preferred direction in colour space. The vanishing of the other 
correlators of odd numbers of field strengths, postulated in (2.73), as well as 
the factorization property (2.75) are strong dynamical assumptions. They  mean 
that  the vacuum fluctuations are assumed to be of the simplest type: a Gaussian 
random process. 

For some applications of the SVM, for instance the calculation of the Wegner- 
Wilson loop described below, Assumption 3 is not crucial and can be relaxed. 
But for the applications of the SVM to high energy scattering (cf. Sect. 3) 
Assumption 3 is crucial. In any case we prefer to  specify the model completely, 
thus giving it maximal predictive power. On the other hand, of course, the model 
can then more easily run into difficulties in comparison with experiments.  
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2.5 The  Wegner -Wi l son  Loop in the  Stochas t ic  Vacuum M o d e l  

We have now specified the SVM completely and can proceed to show how this 
model produces confinement. We consider a static quark-antiquark pair at dis- 
tance R from each other and ask for the potential V(R).  To calculate V(R)  we 
start with a rectangular Wegner-Wilson loop in the X1 - X4 plane (Fig. 10): Let 
C be the loop and S the rectangle, C = v0S. Then 

W(C) -- l(Tr P exp[-ig/c dZ~G.(Z)]) (2.76) 

and 

v[R)--- lim I_InW(C), 
T--~oo :/' 

(2.77) 

T < 

Y 

C 

R X~ 

Fig. 10. Rectangular Wegner-WiIson loop in Euclidean space-t/me in the X1 - X4 
plane. The linear extensions are R in X1 direction and T in X4 direction. Y is the 
reference point used in the application of the non-abelian Stokes theorem. 

To evaluate W(C)  in the SVM we first transform the line integral of the 
potentials in (2.76) into a surface integral of field strengths, using the non- 
abelian version of Stokes theorem (cf. Sect. 2.2). For this we choose a reference 
point Y in S. -,  e get then 

W ( C ) - -  3(Tr P exp[-ig f s  dXldXa¢14(Y ,X ,  Cx)]) (2.78) 

where ¢~. are the field strengths parallel-transported from X to Y along a 
straight line Cx.  The path-ordered way to integrate over S in a fan-type net (cf. 
Fig. 8) is indicated by P. To evaluate the expectation value of the path-ordered 
exponential in (2.78), we will use the technique of the cumulant expansion and 
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the Assumptions 1-3 of the SVM. We make the following replacements in the 
formulae (2.38) ft. of Sect. 2.3: 

~ (X1, X4), 

B(T~) --~ GI4(Y, X (i), Cx(,) ), 

E(B(n). .B(Tn))  -+ 3Tr(~14(Y, X(D; Cx(1))...~14(Y , X('0; Cx(~))), 

t -+ - ig ,  

f ( t )  -+ W(C). (2.79) 

With this we can express W(C) as an exponential of cumulants as given in (2.41). 
From Assumption 3 of the SVM we get that all cumulants for odd numbers of 
gluon field strengths vanish. The lowest nontrivial cumulant is the second one, 
/(2, and from (2.51) we find 

K2(1,2) -+ ITr(P(~i4(Y,X(1);Cx(1))~I4(Y,X(2);Cx(2))). (2.80) 

If we cut off the cumulant expansion (2.41) at n -- 2 we get then for the Wegner- 
Wilson loop 

W(C) = exp - y  dXldX4 dX~dX~ 

where in the last step we used (2.61), i.e. Assumption 1 of the SVM. Next the 
Assumption 2 of short-range correlation for the field strengths enters in a crucial 
way. This implies that for large Wegner-Wilson loops the integration over X~, X~ 
keeping X1, X4 fixed in (2.81) gives essentially a factor a 2. The remaining Xl ,  X 4 
integration gives then the area of S = RT.  Thus we arrive at an area law for the 
Wegner-Wilson loop for R, T >> a: 

w ( c )  = e 

where the constant a is obtained as 

~r3 ~G2 ~o °~ dZ2 D ( -  Z 2) - 32~r ~G~.a 2 

(2.82) 

(2.83) 

We leave the proof of (2.83) as an exercise for the reader. Comparing (2.77) and 
(2.82) we find that the SVM produces a l! marly rising potential 

V ( R ) = a . R  for R>>a ,  (2.84) 

where a is the string tension. 
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The results (2.82)-(2.84) were derived in the framework of the SVM in [40], 
where the model was introduced, and they are interesting in quite a number  of 
respects: 

Only for ~ ~ 0 does one get an area law and thus confinement. The D1 te rm 
which is the only one present in the abelian theory produces no confinement. 
In the SVM confinement is related to an effective chromomagnetic monopole 
condensate in the vacuum. 

The short range correlation for the field strengths produces a long range 
correlation for the potentials if the D term is present in (2.61), i.e. if ~ ~ 0. 

The string tension a is obtained numerically with the input (2.70) as 

a = (420 MeV) 2 (2.85) 

This is very consistent with the phenomenological determinat ion of a 
(430 MeV) 2 from the charmonium spectrum [51]. 

The SVM has been applied in many other  studies of low energy hadronic 
phenomena (cf. [39] for a review). It was, for instance, possible to calculate flux 
distributions around a static quark-antiquark pair [52]. The results compare well 
with lattice gauge theory calculations wherever the lat ter  are available. 

Let us come back to the calculation of the Wegner-Wilson loop above. It 
is legitimate to ask about  the contribution of higher cumulants to W(C). How 
do they modify (2.81)? It turns out tha t  higher cumulants may cause some 
problems, which we discuss in Appendix A together with a proposal for their  
remedy. 

3 Soft Hadronic  React ions  

3.1 Genera l  Cons idera t ions  

In this section we will present a microscopic approach towards hadron-hadron 
diffractive scattering (cf. [26], [53]). Consider as an example elastic scattering of 
two hadrons hi ,  h2 

hi  + h2 --+ hi  + h2 (3.1) 

at high energies and small momentum transfer. We will look at reaction (3.1) 
from the point of view of an observer living in the "femto-universe ' ,  i.e. we 
imagine having a microscope with resolution much bet ter  than 1 fm for ob- 
serving what happens during the collision. Of course, we should choose an 
appropriate resolution for our microscope. If we choose the resolution much too 
good, we will see too many details of the internal s t ructure of the hadrons which 
are irrelevant for the reaction considered and we will miss the essential features. 
The same is t rue if the resolution is too poor. In [53] we used a series of sim- 
ple arguments based on the uncertainty relation to est imate this appropria te  
resolution. 

Let t -- 0 be the nominal collision t ime of the hadrons in (3.1) in the c.m. 
system. This is the t ime when the hadrons hi,2 have maximal spatial overlap. 
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Let furthermore be  to/2 the time when, in an inelastic collision, the first pro- 
duced hadrons appear. We estimate to ~ 2 fm from the LUND model of particle 
production [54]. Then the appropriate resolution, i.e. the cutoff in transverse 
par ton momenta  kT of the hadronic wave functions to be chosen for describing 
reaction (3.1) in an economical way is 

k 2 < v~/ (2 t0)  (3.2) 

where v ~  is the c.m. energy. Modes with higher kT can be assumed to be inte- 
grated out. With this we could argue that  over the t ime interval 

1 1 
- ~ t o  _< t _< ~to (3.3) 

the following should hold or better: could be assumed: 
(a) The par ton state of the hadrons does not change qualitatively, i.e. par ton  

annihilation and production processes can be neglected for this time. 
(b) Patrons travel in essence on straight lightlike world lines. 
(c) The partons undergo "soft" elastic scattering. 
The strategy is now to study first soft pa t ton-pa t ton  scattering in the femto- 

universe. There,  the relevant interaction will turn out to be mediated by the glu- 
onic vacuum fluctuations. We have argued at length in Sect. 2 tha t  these have a 
highly nonperturbat ive character. In this way the nonperturbat ive QCD vacuum 
structure will enter the picture for high energy soft hadronic reactions. Once we 
have solved the problem of parton-parton scattering we have to fold the partonic 
S-matr ix  with the hadronic wave functions of the appropriate  resolution (3.2) 
to get the hadronic S-matr ix  elements. 

We will now give an outline of the various steps in this program. 

3.2 

Consider first quark-quark scattering: 

q(Pl) + q(P2) -+ q(P3) + q(P4), 

The Functional Integral Approach to Parton-Parton Scattering 

8- -  (pl-f-p2) 2 

t =  (Pl --P3) 2 

U :  (Pl --P4) 2" 

(3.4) 

Of course, free quarks do not exist in QCD, but  let us close our eyes to this 
at the moment.  Now we should calculate the scattering of the quarks over the 
finite t ime interval (3.3) of length to ~ 2 fm. Let us assume that  2 fm is nearly 
infinitely long on the scale of the femto universe and use the s tandard reduction 
formula, due to Lehmann, Symanzik, and Zimmermann,  to relate the S-mat r ix  

where we set 

(3.5) 
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element for (3.4) to an integral over the 4-point function of the quark fields. We 
use the following normalization for our quark states 

(q(pj, sj, Aj) I q(Pk, sk, Ak)) 

--- 5sj sk (~Ai An (27r) 3 V/~-°2P 053 (Pj - Pk) 

= ~(j ,  k),  (3.6)  

where s j ,  sk are the spin and A j, Ak the colour indices. With this we get 

(q(p3, s3, A3)q(p4, s4, A4)]S]q(pl, sl, A1)q(p2, s2, A2) ) 
---- <3,41SII, 2) 

{ = (3,411,2) + Z¢ 2 (4J(i~ -mq) ® (3}(i$ -m;)  

<O[T(q(4)q(3)~(1)~(2)) ]0) 

} ( i ~  + m ~ ) l l )  ~ (iO + m'~)12) . (3.7)  

' the renor- Here Z¢ is the quark wave function renormalization constant and mq 
malized quark mass. We use a shorthand notat ion 

I J) = usj,Aj (pj)e - ~ p ~  , 

(Jl = eiPJ~ ~sj,as (PY), 
q(j) = q(xj), 
(j = 1, .., 4) ,  (3.8) 

where u is the spinor in Dirac and colour space. Two repeated arguments j ,  k, ... 
imply a space-time integration, for instance 

q(1)(i$ + m; ) l l )  = dxlq(Xl)(i$ +m'q)e-~'l~lus~,A~(pl).  (3.9) 

Thus in (3.7) we have four integrations over Xl,..., x4. 
We can represent the 4-point function of the quark fields as a functional 

integral: 

<01T(q(4)q(a)q(1)q(2))10) 

= Z -1 f T ~ ( a , q , q ) e x p { i / d x L Q c D ( x ) } q ( 4 ) q ( a ) q ( l ) C t ( 2 ) ,  (3.10) 

where Z is the part i t ion function: 

Z -= / l)(G,q, Ct)exp {i / dxf-.QCD(X)}. (3.11) 

The QCD Lagrangian (1.1) is bilinear in the quark and ant iquark fields. 
Thus - as is well known - the functional integration over q and ~ can be carried 
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out immediately. After some standard manipulations we arrive at the following 
expression: 

(0[T(q(4)q(3)q(1)q(2)) [0) 

det[-i(iT D  - mq + 

{ 1 S F ( 4 , 2 ; G ) l s F ( 3 , 1 ; G ) - ( 3 + + 4 ) ) .  (3.12) 

Here S t ( j ,  k; G) - SF(xj ,  xk; G) is the unrenormalized quark propagator  in the 
given gluon potential Gx(x). We have 

(i~/~ D~ - mq)Sr(x,  y; G) -- -~(x  - y). (3.13) 

Functional integrals as in (3.12) will occur frequently further on. Let F(G) be 
some functional of the gluon potentials. We will denote the functional integral 
over F(G) by brackets (F (G))c :  

(F(C)>c := l f v(G)exp{-i f dxl (c  C P)} • 
det[-i(i~/~D~ - mq + ie)]F(G). (3.14) 

Now we insert (3.12) in (3.7) and get 

<3,41SII, 2 > (3,4[1, 2) -2 e F = -- Z ¢  < J ~ 3 1 ( e ) J ~ 4 2 ( e )  - (3 ~ 4)>G, (3.15) 

where 

= - + 

(k -- 3, 4; j -- 1, 2). (3.16) 

The term .halF1 • .h44F2 on the r.h.s, of (3.15) corresponds to the t-channel 
exchange diagrams, the second term, where the role of the quarks 3 and 4 is 
interchanged, to the u-channel exchange diagrams (Fig. 11). The latter term 
should be unimportant  for high energy, small It[ scattering. Thus we neglect it 
in the following. For the scattering of different quark flavours it is absent anyway. 
We set, therefore: 

(3, 4[SI1, 2) ~ (3, 411, 2) - Z~2(.A/IFal(G).Ad~2(G))G. (3.17) 

We can interpret J~/fFj(G) as scattering amplitude for quark j going to k in 
the fixed gluon potential G),(x). To see this, let us define the wave function 

[¢F)  = SF(i$  + m'q)[j) (3.18) 
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3 /, 

1 2 

4 

(a) (b) 

3 
/ 

~2 

Fig. 11. The t-channel (a) and u-channel (b) exchange topologies for the diagrams 
describing quark-quark scattering. 

which satisfies the Dirac equation with the gluon potential G~ (x): 

( i ~ D ~  - " ~ ) 1 ¢ ~ )  = 0. (3.19) 

Furthermore we use the Lippmann-Schwinger equation for SF: 

sF = s ~ -  s ~ ( ~ -  ~mq)sF (3.20) 

' ---- ' - r n  a i s t h e  where S~  ) is the free quark propagator for mass rn a and 5mq mq 
quark mass shift. Inserting (3.20) and (3.18) in (3.16) gives after some simple 
algebra 

M~. (G)  = ( P k l ( ~  -- 5m)1¢~). (3.21) 

This represents Mk~ in the form a scattering amplitude should have: a complete 
incoming wave is folded with the potential and the free outgoing wave. However, 
there is a small problem. The wave function [¢~) defined in (3.18) does not 
satisfy the boundary condition which we should have for using it in the scat- 
tering amplitude, i.e. it does not go to a free incoming wave for time t --+ -oo.  
The wave function with this boundary condition is obtained by replacing the 
Feynman propagator SF in (3.18) by the retarded one, St. We have shown in 
[53] that in the high energy limit this replacement can indeed be justified for 
the calculation of A,i~. (G) if the gluon potential G~ (x) contains only a limited 
range of frequencies: 

M ~  (G) ~ M~,j (G) = (Pk I ( ~  - 5m)I¢~, ), (3.22) 

where 
+-- 

ICpj) = Sr(iO + m'q)lj), (3.23) 
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which satisfies 
( i T g D ,  - rnq)[¢pj) = 0, (3.24) 

I¢;j) -+ I J) for t --+ -c¢ .  (3.25) 

We summarize the results of this subsection: At high energies and small It] 
the quark-quark scattering amplitude can be obtained by calculating first the 
scattering of quark 1 going to 3 and 2 going to 4 in the same fixed gluon potential  
G~,(x). Let the corresponding scattering amplitudes be 34~1(G ) and .A4~2(G ) 
(cf. (3.22)). Then the product of these two amplitudes is to be integrated over 
all gluon potentials with the measure given by the functional integral (3.14) 
and this gives the quark-quark scattering amplitude (3.17). The point of our 
further strategy is to continue making suitable high energy approximations in 
the integrand of this functional integral which will be evaluated finally using the 
methods of the stochastic vacuum model. 

In the following it will be convenient to choose a coordinate system for the 
description of reaction (3.4) where the quarks 1,3 move with high velocity in 
essence in positive x 3 direction, the quarks 2,4 in negative x a direction. We 
define the light cone coordinates 

x± = x ° 3= x 3 (3.26) 

and in a similar way the 3= components of any 4-vector. With  this we have for 
the 4-momenta of our quarks: 

lp  

pj = 

for j = 1, 3 with pj+ -+ c¢ and 

22) 
_~_ P i T  + m  q 

2pj + 

P i T  2 2 
__ PjT+mq ' 2p j+ 

I 2 r~r2 1 PkT "4- ¥ 
l p k -  -t- 2pk_  

P k  = P k T  2 2 
1 P k T + m q  ' 

-~Pk- + 2pk_ 

(3.27) 

(3.28) 

for k = 2, 4 with Pk-  -+ c~. 

3.3 T h e  E i kona l  E x p a n s i o n  

The problem is now to solve the Dirac equation (3.24) for arbitrary external 
gluon potential G),(x). Of course, we cannot do this exactly. But  we are only 
interested in the high energy, small ]t] limit. This suggests to use an eikonal type 
approach. This works indeed, but it is not as straightforward as one would think 
at first, since the Dirac equation is of first order in the derivatives, whereas the 
eikonal expansion is easy to make for for a second-order differential equation. 



High Energy Collisions and Nonperturbative QCD 29 

What  we did in [53] was to make an ansatz for the Dirac field ¢p¢ (x) in terms 
of a "potential" Cj (x) as follows: 

¢;j (x) = (iT~'D~ + rnq)¢j(x). (3.29) 

A suitable boundary condition for Cj (x) which is compatible with (3.25) is 

1 1+~/°  
Cj(x) -+ ~ - -  e-iP~u(pj)  (3.30) 

pj -4- mq 2 

for t --+ -c¢ .  Inserting (3.29) into the Dirac equation (3.24) gives: 

{ i'7~ D~, - mq}{ iTP D p + mq}C~j(x ) = 0. (3.31) 

For the case of no gluon field, G~ (x) = 0, the covariant derivatives Dn degenerate 
to the ordinary ones, 0h, and (3.31) to the Klein-Gordon equation: 

03 + m2q)¢j(x) = 0. (3.32) 

Thus the problem for the Dirac field is in essence reduced to a scalar field-type 
problem which is handled more easily. 

Now it is more or less straightforward to turn the theoretical crank and to 
obtain the eikonal approximations for Cj (x) and ~bp~ (x), respectively. Take j = 1 
as an example. We make the ansatz 

¢1 (x) = e-~Vl~ ¢l (x). (3.33) 

Inserting Pl from (3.27) we see that  on the r.h.s, of (3.33) the fast varying phase 
factor is 

1 
exp(-i-~pl+x_ ), 

since Pl+ --4 cx~. Assuming all the remaining factors to vary slowly with x we 
insert (3.33) in (3.31) and order the resulting terms in powers of l/p1+. The 
solution of (3.31) to leading order in l /p1+ is then easily obtained. The final 
formula for ¢pl (x) reads: 

~pl (X)= V--(X+,X-,XT). {1"~O (p~+)}e--~'lZu(pl), (3.34) 

where 

"+ , , x T > ] }  I. 2 ,,#_ dx+G_(x+,z_,  (3.35) 

and P means path ordering. When coming in, the quark picks up a non-abeli- 
an phase factor, just the ordered integral of G along the path. Of course, V_ is a 
connector, as studied in Sect. 2.1, but now in Minkowski space and for a straight 
light-like line running from -0o  to x (Fig. 12). 
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Fig. 12. Projection of the world lines of the quarks 1(2) moving at high velocity 
in positive (negative) x s direction onto the x ° - x 3 plane in Minkowski space. The 
non-abel/an phase factors V- in (3.35) (V+ in (3.37)) are the connectors taken along 
lines x_, xT = const. (x+, x~" = const.). 

In a similar way we obtain for the quark with initial momentum P2, i.e. the 
one coming in from the right, for P2- -+ co: 

r x  ( ( 1 ) } .  ¢p2( ) -- V+(X+,X_,XT) 1 + 0 ~2- e-~P2~u(P2)' (3.36) 

where 

V+(x+ ,x_ ,xT)  -- P ( e x p  [ - 2 g / _ ~  dx~G+(x+,x~_,XT)] I . (3.37) 

Recall that - i  

a (x) = (a°o(x) + (3.3s) 

are matrices in colour space. Thus path ordering in (3.35) and (3.37) is essential. 
A solution for ~ 1  (¢~2) as a series expansion in powers of 1 / p l + ( 1 / p 2 - )  was 

obtained to all orders in [55]. 



High Energy Collisions and Nonperturbative QCD 31 

3.4 The Quark-Quark Scattering Amplitude 

We can now insert our high energy approximations (3.34), (3.36) for ¢~1,2 (x) in 

the expression for M ~  ) in (3.22). The resulting integrals are easily done and we 
get for P~+,P3+ --+ oo: 

(G) -+ / dx e ~(p3-w)~ u(p3)(g~(x) - 6re)V_ (x)u(pl) 

--+ ~ dx+dx_d2xT exp ~ ( P a - - P l ) + X - - - i ( P a - - P l ) T ' X T  

~ (p3) 7+ ~ V_ (z+, z _,  x r )  u (pl) 
/ 

-+ i ~ .  J dx_d  x T exp[~(p3 - p l ) + X -  - i(p3 - P l )T"  XT] 

IV- (c~, x_,  XT) -- IlIAd,At. (3.39) 

In a similar way we obtain for P2-,P4- "-~ oo: 

M ~ 2 ( G )  ~ i J p , _  . p~_ . 5,4,82 

2 i 
dy+d YT exp[~(p4 --P2)-Y+ -- i(p4 - P2)T"  YT] 

[V+ (y+, oo, YT) -- ll]A4,A2. (3.40) 

Here we have written out the spin and colour indices of the in- and outgoing 
quarks (cf. (3.6), (3.7)). We have used furthermore: 

fis3(P3)7~Us~(pl) ---+ ~ .  ¢~s3,sxn~ for Pl,3+ --~ 00, 

ft,,(p4)Tt*us2(p2) ~ ~ .  58,,s2n~ for V2,4- ~ c~, (3.41) 

where 

~"+ = . (3.42) 

1 

Finally, the x+(x_) integration for A4~l(Jt4~2 ) could be done with the help of 
(2.15) or rather the analogous equation for connectors in Minkowski space time. 

Now we can insert everything in our expression (3.17) for the S-matr ix ele- 
ment. This gives: 

(3,41SI1,2) = (3,411,2) + 

~/pa+pl+p4-p2-"Ss3,s, Ss4,8,z¢2 f dx-d2xT f dy+d2yT 

i 
exp [5(pa - pl)+x- - i(p3 - P l )T"  XT] 

i 
exp [~(P4 -- P2)-Y+ -- i(p4 -- P2)T" YT] 

([V-(oo, x_, XT) - II]A3,AI [V+ (y+, oo, YT) - II]A.,A2 )G" (3.43) 
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From translational invariance of the functional integral we have: 

([V_ (oo, x_ ,  XT) -- I[]A a,A1 [V+ (y+, co, YT) -- ]l]Aa,A2 )G 

= <[V_(cc,0, XT --YT) -- ll]A3,AI[V+(O, oo, O) -- II]A4,A~)G. (3.44) 

Inserting (3.44) in (3.43), we can pull out the 5-function for the overall energy- 
momentum conservation and we get finally: 

(3, 41S11, 2) = (3,411, 2) + i(27r)45(p3 + P4 - -  P l  - -  P2)<3, 41Tll, 2>, 

<3, 41T I i, 2) = i2x/pa+pl+p4_p2-" 5s3,s, (Is4,s2 (-Z¢ 2) / d2 ZTeiqT JZ T 

([V_(oc, 0, ZT) -- ll]A3,A,[V+(O, oo,O) -- ll]A4,A2>a. (3.45) 

Here q is the momentum transfer: 

q = Pl - Pa -- P4 - P2, 
q2 = t. (3.46) 

In the high energy limit q is purely transverse 

Using different techniques the type of formula (3.45) was also obtained in [56]. 
In (3.45) we still have to calculate the wave function renormalization constant 

Z¢. This can be done by considering a suitable matr ix  element of the baryon 
number current 

1 , gq(x)-  q(x) 

which is conserved and, therefore, needs no renormalization. The  result is (of. 
[531): 

1 (TrV_ (c~, 0, 0))a.  (3.48) Z¢ = 

Let us summarize the results obtained so far: 
The quark-quark scattering ampli tude (3.45) is diagonal in the spin indices. 

Thus we get helicity conservation in high energy quark-quark scattering. Using 
(3.41) we can write the spin factor in (3.45) as 

2x/pa+pl+p4_pz_5,3 ,s ,Ss , , s  ~ ~-- a ,3 (pa)3 /"us , (p l )as , (pa) ,7 ,us2(p2)  (3.49) 

for Pl,3+ --+ o~ and P2,4- -+ 00. This 7 ~ @ 7~ structure was postulated for 
high energy quark-quark scattering in the Donnachie-Landshoff model for the 
"Pomeron" coupling [23]. However, a s tudy of quark-antiquark scattering (cf. 
[53] and below) reveals that  (3.45) does no__tt allow an interpretat ion in terms of 
an effective Lorentz vector exchange between the quarks. The ampli tude (3.45) 
has both, charge conjugation C even and odd contributions. The C even par t  
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corresponds to the "Pomeron" and this is not a Lorentz-vector exchange, but 
the coherent sum of spin 2,4,6,... exchanges (cf. [57], [53]). The C-odd part 
corresponds to the "Odderon" introduced in [58] and this is indeed a Lorentz 
vector exchange. 

The quark-quark scattering amplitude (3.45) is governed by the correlation 
function of two connectors or string operators V± associated with two light-like 
Wegner-Wilson lines (Fig. 13). 

Z o 

A 

"-lm~ Z 3 

Fig. 13. Two light-like lines on which the associated string operators V~- in (3.45) are 
evaluated. Their correlation function governs quark-quark scattering at high energies. 

The first numerical evaluations of (3.45) using the methods of the SVM were 
done in [59]. However, it turned out that quark-quark scattering was calculable 
from (3.45) for abelian gluons only. Indeed, we are embarked on a program to 
reproduce in this way the results obtained in [25] in the framework of perturba- 
tion theory for high energy scattering [60]. For the non-abelian gluons difficul- 
ties arose having to do with our neglect of quark confinement. This was really 
a blessing in disguise and the solution proposed in [59] was to consider directly 
hadron-hadron scattering, representing the hadrons as qq and qqq wave packets 
for mesons and baryons, respectively. We will see below how this is done. 
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3.5 The  Sca t t e r ing  of  Sys tems  of  Quarks~ Antiquarks~ a n d  Gluons  

Let us consider now the scattering of systems of partons. As an example we 
study the scattering of two qq pairs on each other: 

q(1) + ~(1') + q(2) + q(2') --+ q(3) + ~(3') + q(4) + ~(4'), (3.50) 

where we set q(i) - q(pi, si, Ai) ,  4(i') - ~(p~, s~, A~) (i = 1, ..., 4) with Pi, si, 
Ai  (p~, s~, A~) the momentum, spin, and colour labels for quarks (antiquarks). 
We assume the particles with odd (even) indices i to have very large momentum 
components in positive (negative) x 3 direction (Fig. 14), i.e. we assume: 

Pi+,P~+ -+ c¢ for i odd, 

Pi-,P~_ ~ c~ for i even. (3.51) 

The transverse momenta are assumed to stay limited. 

P4 

-~X3 

Fig. 14. Sketch of reaction (3.50) in the overall c.m. system 

Of course, the reduction formula can also be applied for the reaction (3.50). 
We have to be careful in keeping disconnected pieces. The further strategy is 
completely analogous to the one employed in Sect. 3.2 for deriving (3.7)-(3.17). 
As we dropped the u-channel exchange diagrams in Sect. 3.2, we drop now all 
terms which are estimated to give a vanishing contribution to high energy small 
momentum transfer scattering. These terms are characterized by large momenta 
of order of the c.m. energy x/~ flowing through gluon lines, leading to suppression 
factors of order 1Is. Keeping only the t-channel exchange terms and performing 
all the steps as done in Sects. 3.2 and 3.3 for quark-quark scattering leads finally 
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to a very simple answer for the S-matrix element correponding to reaction (3.50) 
in the limit (3.51): 

(3, 3', 4, 4'ISI1,1', 2, 2' ) --+ 

([5(3, 1) - iZ~lM~l (G)][5(Y, 1') - i Z ; 1 . ] ~ ' ; , 1  , (G)] 

[5(4, 2) - iZ~l.M~e(G)][5(4 ', 2') - iZ~l.M'4,2 , (G)])a. (3.52) 

Here 5( i , j )  is as defined in (3.6), .M~I(G ) and .M~2(G ) are as in (3.22) and 
I f  IT J ~  4'2' (G) a re  A~I 3' 1' (G) and the corresponding amplitudes for the scattering of 

antiquarks on the gluon potential G•(x). We define 

(J'l = ~'. A'. (P.~) e-ip~, (3.53) 

where vs~,A~(p~) is the Dirac and colour spinor for the antiquark q(j'). We have 
then with Sr the retarded Green's function for quarks in the gluon potential  
a~(x): 

M'~,j, (e) = -(j '[(i$ - m'q)Sr(i$ + m'q)lk' ), (3.54) 

where (k', j ' )  = (3', 1'), (4', 2'). 
In the high energy limit (3.51) the scattering amplitudes (3.54) can again be 

obtained in the eikonal approximation. Indeed, we can just  use C-invariance to 

M 3,~,(G) -+ Ve3+v~+ "5~i, 4 

/ dx-d2xTexP [2 (p~ -- P~l)+x- -- i(P~a -- P~)T " XT] 

[V* ((x), ~ _ ,  XT) -- ]l]Asa,Ai1, 

get: 

(3.55) 

• 

/ dy+d2yTexP [2 (p~ -- Pt2)-y+ -- (Ps4 -- P~)T " YT] 

[V_~ (y+, c~, YT) -- ll]A,~,A,~. (3.56) 

In Sect. 3.1 we have argued that  over the time interval (3.3) we can neglect 
pat ton production and annihilation processes. For the scattering over such a t ime 
interval we should have an effective wave function renormalization constant 

z ¢  = 1, (3.57) 

since the deviation of Z¢ from 1 is just  a measure of the strength of quark 
splitting processes: q -+ q + G etc. In the calculation of Z¢ in the framework of 
the SVM to be described below, one finds indeed Z¢ = 1, showing the consis- 
tency of this approach with the simple physical picture of Sect. 3.1. Anticipating 



36 O. Nachtmann 

this result we see f rom (3.6), (3.39), (3.40) and (3.55), (3.56) that  in the S- 
matrix element (3.52) the 5(k,j) (5(k',j')) terms cancel with the 11 terms in 

(.A/l a,j,(G)) in the limit (3.51). This leads us to the following sim- 
ple rules for obtaining the S-matrix element in the high energy limit: For the 
right-moving quark (1 -+ 3) we have to insert the factor: 

Sq+(3, 1) = P3X/-ff~--P-~ " 5s3,s, / dx-d2xT 

For the right-moving antiquaxk (1' --+ 3') we have to insert the factor: 

S,7+(3', 1 ' ) =  ~ ' 5 . , ~ , s ;  f dx-d2xT 

[' ] exp ~(Pa - p l ) + z -  - i ( p ;  - p l ) r ' x r  (3.59) 

For the left-moving quark (2 ~ 4) and antiquark (2' ~ 4') we have to exchange 
the + and - labels everywhere in (3.58) and (3.59). This gives: 

Sq_(4, 2) = ~ -  5s,,,2 .f dy+d2yT 

exp ~(p4 - p2) -y+ - i(p4 - P2)T "YT V+(y+, c~,YT)A~,A~, (3.60) 

, ] exp ~(p4--p~)-y+--i(p'4--p2)T'YT V~(y+,oO,yT)A'4,A' 2. (3.61) 

Finally we have to multiply together the factors $q±, $q~ and integrate over 
all gluon potentials with the functional integral measure (3.14) to get 

(3, 3' 4, 4'1SI1,1', 2, 2' / = (Sq+(3,1),5¢+(3',1')Sq_(4,2),Sq_(4',2')la. (3.62) 

Going from quarks t o  antiquarks corresponds, of course, just  to the change 
from the fundamental representation (3) of SU(3)c to the complex conjugate 
representation (3) as we see by comparing (3.58) with (3.59) and (3.60) with 
(3.61). 

It is an easy exercise to show that these rules can be generalized in an obvious 
way for the scattering of arbitrary systems of quarks and antiquarks on each 
other. Here we always assume that  we have one distinguished collision axis and 
that  one group of partons moves with momenta  approaching infinity to the right, 
the other group to the left. The transverse momenta  are assumed to stay limited. 

In Appendix B we show that  these rules can also be extended to gluons par- 
ticipating in the scattering. We simply have to change the colour representation 
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in (3.58), (3.60) from the fundamental to the adjoint one. In detail we find that  
for a right-moving gluon 

a(pl,  j l ,  al) ~ G(p3, j3, a3) (3.63) 

the following factor has to be inserted in the S-matrix element (cf. Appendix 
B): 

SG+(3, 1) = ~ .  (fjs,a ~ 

f dx-d2xTexP [2 (PZ -- Pl)+x- -- i(p3 -- Pl)T " XT ] 

V_ (oo, x_,  xr)a, , , , , .  (3.64) 

Here jl,3 are the spin indices which are purely transverse, 1 < jl,3 < 2. The 
colour indices are al ,  a3 with 1 < al,3 _< 8 and ]2 is the connector for the adjoint 
representation of SU(3)c (cf. (B.23)). 

For a left-moving gluon we have again to exchange + and - labels in (3.64). 

3.6 The  Scattering of  Wave Packets o f  Partons  
Represent ing  Mesons  

In this section we will go from the parton-parton to hadron-hadron scattering. 
Our strategy will be to represent hadrons by wave packets of partons, where 
we make simple "Ans~itze" for the wave functions. Then the partonic S-matrix 
element obtained by the rules derived in Sect. 3.5 will be folded with these wave 
functions to give the hadronic S-matrix elements. Of course, we always work in 
the limit of high energies and small momentum transfers. 

Let us start  by considering meson-meson scattering: 

MI(P1) + M2(P2) --+ M3(P3) + M4(P4), (3.65) 

where/1//1,3 are again the right movers, M2,4 the left movers. We make simple 
"Ansitze" for the mesons as q~ wave packets as follows: 

[M~(Pa))= f d2pT fold¢ (2~3/2h~,,~(¢,PT) 
1 

-~6Aj,A, s Iq(Pa, sj, Aa) , ¢(Pj - Pa, s}, A~.)) (j = 1, ..., 4), (3.66) 

where for j = 1, 3: 

Pa+ --}¢~ 

PJ+ = CPa+, 
1 p  

PAT---- ~ aT q- PT (3.67) 
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and for j -- 2, 4: 

Pj_  --~ co 

p j _  = CP _, 

1 
PiT : -~P jT "[" PT. (3.68) 

Here ~ is the longitudinal momentum fraction of the quark in the meson, PT is 
the relative transverse momentum of q and q. 

We stress tha t  we are not restricting ourselves to spin 0 mesons only. Wi th  
appropriate functions h(~, PT) in (3.66) we can represent states of q~-mesons of 
arbi t rary  spin. 

We choose for our states (3.66) the usual continuum normalization: 

(Mi (P ' ) tMj  (P))  = (27r) ~ 2P°~ 3 (P '  - P) .  (3.69) 

With  (3.6) this requires: 

/o d2pT 2~(1 - *J ¢)hs, s, (¢, pT)h~,s, (¢, PT) = 1 (3.70) de 

In (3.69) and (3.70) no summation over j is to  be taken. 
For later use we define the wave functions in transverse position space at 

fixed longitudinal momentum fraction ¢: 

1 / d2pT exp(ipT • XT)h~,~, (~, PT) := V/2 (1- 

(j = 1, ..., 4). (3.71) 

With  this we define profile functions for the transitions Mj --+ Mk for right and 
left movers as: 

Wk,j (XT) := d¢(~0k,s ' (C, * j XT)) ~Os, ~, ((,  XT), (3.72) 

where k, j  are both  odd or even. Clearly we have (cf. (3.70)) 

w~j(XT) _> 0, 

d2XTWj , j (XT)  = 1, 

(no summation over j ) .  (3.73) 

Let us first s tudy the transition of the right movers alone, i.e. the "reaction": 

M1 (P1) -+ Ma(Pa). (3.74) 

For stable mesons M1,3 we should find tha t  the corresponding S-matr ix  elements 
are identical to the matr ix  elements of the unit operator.  Is this borne out in 
our approach? 
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From the rules given in Sect. 3.5 we find easily the S-matrix element for the 
transition 

q(1) + ~(1') --+ q(3) + ~(3') (3.75) 

in the form 
(3,3'1SII, I') = (8q+(3, i),~+(3', l'))c. (3.76) 

After folding (3.76) with the mesonic wave functions (3.66) we get: 

(M3 (P3)ISIM1 (P1)) = (2~r) 32P0(~3 (P3 - P1 ) 

d2ZT d~3 d¢z ~os, s, (~3, ZT)~ols,s, (¢1, •T) 

<~ Tr[y_ (~, z_, z r ) ~  (c~, 0, 0)]>o. (3.77) 

Now we remember that we consider the limit PI+ -~ oo. Therefore we perform 
a change of variables in the z_ integral by setting: 

z" := 1 (3.7s) ~PI+z-. 

This gives: 

(/I//3 (P3)ISIMI (PI)) -- (2~r)32p°~ 3 (P3 - PI) 

f fo fa , d2ZT d~3 d¢1 3" z 1 98,,,(¢3, T)98,,,(¢l,ZT) ~ exp[ i (~3  - ~l)Z~] 

<3T~[V-(oo, ~--~+z',~T)Vt-(oo, O,O)])o 
(27r)32p°sa(P3 - PI) .f d2ZT Wa,I(ZT) > 

(ITr[V_(oo, 0, zT)V_t(oo,0,0)])c for PI+ --+ c~. (3.79) 

In (3.79) V_ (oo, 0, ZT)(V_ t (oo, 0, 0)) is the quark (antiquark) connector taken 
along the line Cq(Cq), where: 

c q : ~  -+ ~ ( ~ )  = , ( - ~  < ~ < ~ ) ,  (3.s0)  

c~  : , -  ~ ~q(,-) = , ( - ~  < ~- < ~ ) .  (3 . s l )  

But from Sect. 2.1 we know that the connector V_ t along Cq is equal to the 
connector V_ taken along the oppositely oriented line 04 (cf. (2.25)). Now we 
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will allow ourselves to join the lines Cq and 0q at large positive and negative 
times. We can imagine the gluon potentials to be turned off adiabatically there. 
We obtain then from the product of the connectors in (3.79) a connector taken 
along a closed lightlike Wegner-Wilson loop 

] w [y_ (oo, 0, t (oo, 0, 0)] 1 
> W+ (~zr ,  ZT). (3.82) 

Here we define 

1 f 
~V=t=(yT, ZT) ---- ~TrP exp[-ig ] d x ,  G~(x)] 

J c ±  
(3.83) 

with C + ( C - )  a lightlike Wegner-Wilson loop in the plane x_ = 0(x+ = 0), 
where in the transverse space the centre of the loop is at YT and the vector from 
the antiquark to the quark line is Z T (Fig. 15). 

X 0 

quark line 

gT 
~ x l ,  2 

~X 3 

ZT 
antiquark line 

Fig. 15. The light-like Wegner-Wilson loop in Minkowski space-time, C+ consisting 
of two light-like lines in the hyperplane x -  = 0 and connecting pieces at infinity. In 
transverse space the centre of the toop is at yp,  the vector from the antiquark to the 
quark line is ZT (from A to B). 
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Inserting now everything in (3.79) we get the simple answer: 

<M3 (Pa)IS[Mi (PI)) = (2rr) 32P°aa (P3 - Pi) 

d2z T 1 , ~ 3 , i ( * r ) < W + ( ~ z r , z r ) > o -  (3.84) 

In the next section we will evaluate the functional integral in (3.84) in the SVM. 
We will find 

(]4/+(yT, ZT)>G[SVM = i. (3.85) 

Inserting this in (3.84) leads to the expected result (cf. (3.66)-(3.72)): 

<M~(& )ISIM~ (P1)) = (M3(P3)lU~ (P~)). (3.86) 

In our approach the q~ pair in the right-moving meson M1 -4 M3 does not 
interact. Of course this is only valid over our finite time interval (3.3)! 

The techniques developed thus far are now easily employed for the reaction 
(3.65). After performing similar steps as above we arrive at the following S- 
matrix element: 

Sf~ = ~I~ + i (2r )4~(P3  + / ' 4  - P1 - P2)Tj~, 

Tf~ =_ (M3(Pa), M4(P4)ITIMI(P1), M2(P2)) 

-2is f d2bTd2 xTd2yT edqr'br wa,i (XT)W4,2 (YT) 

1 1 
(W+ (~bT, XT)W- (---~bT, YT) -- 1)@. (3.87) 

Here s = (P1 +P2) 2 is the c.m. energy squared and qT is the momentum transfer, 
which is purely transverse in the high energy limit: 

qT ---- (P1 - P3)T. (3.88) 

From (3.87) we see that the amplitude for soft meson-meson scattering at 
high energies is governed by the correlation function of two lightlike Wegner- 
Wilson loops, where one is in the hyperplane x_ -- 0, the other in x+ -- 0. The 
transverse separation between the centres of the two loops is given by bT, the 
impact parameter. The vectors XT and YT give the extensions and orientations 
of the loops in transverse space (Fig. 16). The loop-loop correlation function 
has to be integrated over all orientations of the loops in transverse space with 
the (transition) profile functions of the mesons, ws,i and w4,2. Finally a Fourier 
transform in the impact parameter has to be done. 

The methods presented here for meson-meson scattering can of course also 
be employed for scattering reactions involving baryons and antibaryons. This is 
sketched in Appendix C. 
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X 2 
/ \  

q-- ~ \ \ \ \ \ \ \  

q+ 

q+ 

> x 1 

Fig. 16. The projections of the two lightlike Wegner-Wilson loops C+, C- occurring 
in the definition of 1 1 W+(~bT ,xw) ,W- ( - -~bT ,yT)  (c£ (3.87), (3.83)) into transverse 
space. The points marked q+, (7+ (q-, q-)  correspond to the projections of the quark 
and antiquark lines of C+ (C-).  

3.7 The  Eva lua t ion  of  Sca t te r ing  A m p l i t u d e s  in t he  Minkowsk ian  
Version of  the  Stochast ic  Vacuum M o d e l  

In the previous section we have derived expressions for the amplitudes of soft 
meson-meson scattering at high energies in terms of correlation functions of 
light-like Wegner-Wilson loops. The task is now to evaluate the corresponding 
functional integral 0 c  in (3.87). Surely we do not want to make a perturbative 
expansion there, remembering our argument of Sect. 1 (cf. (1.14)). Instead, we 
will turn to the SVM which did quite well in its applications in Euclidean QCD 
(Sect. 2). Of course, the generalization of the SVM to Minkowski space-time is 
a bold step which was done in [59], [45]. The authors of these Refs. proposed to 
use in Minkowski space-time just the Assumptions 1-3 of the SVM (cf. Sect. 2.4), 
but after having made a suitable analytic continuation. In this way we obtain 
for instance the Minkowski version of Assumption 1 as (cf. (2.60), (2.61)): 
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A s s u m p t i o n  1: The correlator of two field strengths, shifted to a common 
reference point y, is independent of the connecting path  and given by: 

g2 ^ ~ b  t 1 ab 
(4%--~GL(y,=;c=) .~(y,=;c=,))c=~ F.~.~(~), 

1 G F.~.~(~) = ~ ~ { ( g . . g ~  - g.~g~.)~D(~ ~) (3.89) 

1 0 0 
+ 5  [ ~  (z~g.. - z.g.=) + ~ (~.g.~ - .~g~ . ) ] .  (1 - ~ )D1(2)} .  

Here z -- x - x '  and D(z 2) and Dl(z  2) are defined as in (2.65), (2.67) for z 2 < 0 
and by analytic continuation for z 2 > 0. 

As a first application let us calculate the expectation value of one lightlike 
Wegner-Wilson loop. We have from (3.83) using the non-abelian Stokes theorem: 

<Og+(YT, ZT)) c < 3 T r P e x p [ - i g  f c + d X . G " ( x ) ] ) a  

s " " o(=. ,  ") O . . ( R ,  5; c=)])a. 

Here S+ is the (planar) surface spanned into C+ (Fig. 15) and parametrized by 

x ~ ' ( u , v ) = u n ~ _ + y z - ( v - ~ ) z l  ~, 

- c ~  < u < c~, 0 < v < 1, (3.91) 

where n+ is as in (3.42) and 

y~ ___ , z ~ _- . (3.92) 

The reference point on the surface S+ is denoted by R and C~ are straight lines 
running from x to R. From (3.91) we find 

cg(x", x v) _ zUn~ - _ n~_zV. (3.93) 
a(~,v) 

Now we apply the cumulant expansion formulae (cf. Sect. 2.3) to (3.90) and 
use Assumptions 1-3 of the SVM. This is completely analogous to the calculations 
done in Sect. 2.5. We get: 

(W+(yT, ZT))O = exp { -- -~- dudv du'dv'K2(x - x') 
+ + 

+ higher cumulant terms}, (3.94) 
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where 

(~(X tp Xla~ 
O ( z # , x  ~') , , " F " g 2 ( x  - x ' )  - - 

x =-- x(u,v) ,  x' =-- x '(u' ,v ') .  (3.95) 

It is an easy exercise to evaluate K2(x - x') using (3.93) and F~,~p~ from (3.89). 
The result is 

K2(x - x') -- 0 (3.96) 

for all x, x' E S+. With Assumption 3 of the SVM (cf. (2.73)-(2.75)) all higher 
cumulants are related to the second one. Thus, (3.96) implies also the vanishing 
of all higher cumulant terms in (3.94) and we get 

(W+(yT, ZT))G = 1. 

A similar argument leads, of course, also to 

(W--(yT, ZT))G ~- 1. 

(3.97) 

In Sect. 3.6 we have already used the result (3.97) in the discussion of the 
transition M1 -+ M3 to obtain (3.86). We can also use it for the calculation 
of the wave function renormalization constant Z¢. The expression we obtained 
for Z¢ in (3.48) can be interpreted as the expectation value of the non-abelian 
phase factor picked up by a very fast right-moving quark. Now, isolated quarks 
do not exist. The best approximation for it we can think of is a fast, right-moving 
quark-antiquark pair with the antiquark being very far away from the quark in 
transverse direction. In this way we obtain for Z¢ instead of (3.48): 

Z ¢ =  lim (1Tr[V_(co, O,O)Vf(co, O, ZT)])a 
IzTI--+oo t~ 

1 
= lim <~/~_t_(---~ZT,--ZT)>G 

IzT I-+~ 
= 1. (3.99) 

This result was already used in Sect. 3.5, (3.57)ff. 
We come now to the evaluation of the loop-loop correlation function of (3.87): 

1 1 
04;+ ( ~bT, xT)W-  (-- ~bT, YT) -- 1) a 

= <[W+(IbT,XT)- I][W_(-IbT, yT)- 11)~. (3.100) 

Here we used (3.97), (3.98). The strategy is as before. We want to transform 
the line integrals of ~Y± (cf. (3.83)) into surface integrals using the non-abelian 
Stokes theorem of Sect. 2.2. Following the authors of [59], [45] we choose as 
surface with boundary C+ and C_ a double pyramid with apex at the mid-point 

(3.98) 



High Energy Collisions and Nonperturbative QCD 

/ p-  P+ 

45 

Fig. 17. The curves C+ and C- along which the path integrals YV. in (3.100) are 
taken. The mantle of the pyramid with apex at the origin of the coordinate system and 
boundary C+ (C-) is P+ (Ta-), the basis surface S+ (S-).  

of C+ and C_ which is the origin of our coordinate system (Fig. 17). The mantle 
of this pyramid is P+ + P -  and we have with suitable orientation 

0(p+ + ~,_) = c+  + c_ .  (3.101) 

In the transverse projection of Fig. 16 the basis surface S+ (S_) appears as the 
line 4+q+ (~_ q_) and the mantle surface P+ (P_) as the triangle 0q+q+ (04-q-). 
From the non-abelian Stokes theorem we obtain now for (3.100): 

1 
( [W+ ( lbT ,  XT) -- 1] [W_ (-- ~bT, YT) -- 1] )V (3.102) 

-- ° ( x " x v ) o  dudv ~ v )  ~,v(O,x; C,)] - 1} 

{ 3 T r P e x p [  i g f~_ ' 'O(x'P'x"~) ^ " ' - 2 d u d v  0---(-~,-~) G , , , ( O , x ; C x , ) ] - l } ) c .  

So far, it has not been possible to use some version of the cumulant expansion for 
(3.102). Thus in [59], [45] the path-ordered exponentials on the r.h.s, of (3.102) 
were expanded directly. The structure of this expansion is as follows: 

( [ F F +  - 1 ] [ W -  - 1])G 

_ ~ [  f~+o + f~+ f~+oo +...~ 
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3 Tr[/~,_ O + /~,_ /~_ OO + ...]>G. (3.103) 

The trace of a single shifted field strength vanishes. This means that we cannot 
exchange a single coloured object in meson-meson scattering (3.65). The first 
non-trivial contribution in (3.103) comes from the term with two shifted field 
strengths in each trace. The corresponding correlation function 

can now be evaluated using the Assumptions 1-3 of the Minkowskian version of 
the SVM. In doing so it is advantageous to transform the surface integrals over 
the mantles of the pyramids P+ into surface integrals over S+ and integrals over 
the volumes V± enclosed by 79+ and S+ and 79_ and S_, respectively: 

O(V±) = 79± - S±. (3.104) 

Then one can use the ordinary Gauss theorem to get simpler integrals. 
We will not enter into the details of these caicu]ations here, but only note that 

the integrations along the directions x+ and x_ can easily be done analytically 
and that one ends up with integrals over the projections of S± and V+ into the 
transverse space. Thus, one finally needs the correlator (3.89) for space-like se- 
parations only: 

( x  - z ' )  2 = z ~ < 0 ,  

where XT runs over the triangle .4+ = 0q+q+ and xtT over A_ = 0q_q_ in 
Fig. 16. For space-like separations the correlator functions D(z 2) and/)1 (z 2) in 
(3.89) are as in Euclidean space time. The resulting expressions are then of the 
following structure 

([}IV+ - I][14;_ - l]>a ~ (3.106) 

{ [ d2zT [ d% G2[..D(-(zT - 
Jzl + J~- 

These integrals have to be evaluated numerically. 
With the methods outlined above, we have obtained an (approximate) expres- 

sion (3.106) for the functional integral 0~ governing the meson-meson scattering 
amplitude (3.87). Note that the nonperturbative gluon condensate parameter G2 
sets the scale in (3.106) and in the integrals to be performed there the vacuum 
correlation length a enters through the D and D1 functions. Thus, on dimen- 
sional grounds, we must have in our approximation: 

(04)+_l)(},y__l))G=G2aSf(bT ' XTa ' YT)a , (3.107) 
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where ] is a dimensionless function. To obtain the meson-meson scattering am- 
plitude (3.87) we still have to integrate over the profile functions w3,1 (XT) and 
w4,2 (YT). Here the transverse extensions of the mesons - i.e. of the wave packets 
representing them - enter in the results. 

For a detailed exposition of the numerical results obtained in the way sketched 
above we refer to [45]. Here we only discuss the outcome for proton-proton 
scattering when t reated in a similar way (cf. Appendix C). A fit to the numerical 
results gives for the total  cross section and the slope parameter  at t = 0 of elastic 
proton-proton scattering the following representation: 

atot (Pp) = 0.00881 • (37r2G2) 2- a 10, (3.108) 

d . dael ,  ,, 
bpp := ~ m --~-(PP)[t=o = 1.558a 2 + 0.454R 2. (3.109) 

Here Rp is the proton radius and the formulae (3.108), (3.109) are valid for 

1 < R p / a  < 3. (3.110) 

To compare (3.108), (3.109) with experimental  results, we can, for instance, 
consider the c.m. energy x/~ = 20 GeV and take as input the following measured 
v lues (cf. [45]): 

Utot (PP)[Pomeron part = 35 rob, 
bpp = 12.5 GeV -2, 

Rv _= Rp,elm = 0.86 fm. (3.111) 

We obtain then from (3.108) and (3.109): 

a = 0.31 fm, 

G2 = (507 MeV)  4. (3.112) 

The values for the correlation length a and for the gluon condensate G2 come 
out in surprisingly good agreement with the determinat ion of these quantities 
from the fit to the lattice results (2.70). 

But perhaps we were lucky in picking out the right c.m. energy v ~ and radius 
for our comparison of theory and experiment.  Wha t  about  the s-dependence of 
the total  cross section a~o~ and slope parameter  b? The vacuum parameters  G2 
and a should be independent of the energy x/~. On the other hand, from the 
discussion in Sect. 3.1 leading to (3.2), it seems quite plausible to us tha t  the 
effective strong interaction radii R of hadrons may depend on v~.  Let us consider 
again pp (or PI~) elastic scattering. Once we have fixed G2 and a from the da ta  at 
v/~ = 20GeV (3.108) and (3.109) give us atot(pp) and bpp in terms of the single 
parameter  Rp, i.e. we obtain as prediction of the model a curve in the plane bpp 
versus atot (pp). This is shown in Fig. 18. It  is quite remarkable tha t  the da ta  
from v ~  = 20GeV up to Tevatron energies, V~ = 1.8 TeV follow this curve. 
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Fig. 18. The relation between the total cross section atot and the slope parameter b 
for proton-proton and proton-antiproton scattering. The dotted line is the prediction 
from Regge theory. The prediction of  the calculation for soft high energy scattering in 
the stochastic vacuum model is that the data points should lie in the area between the 
full lines. In essence this is given by (3.108), (3.109) with an uncertainty estimate from 
different assumptions for the proton wave functions (cf. [45]). 

Summarizing this section we can say that explicit calculations for high 
energy-elastic hadron-hadron scattering near the forward direction have been 
performed combining the field-theoretic methods of [53] and the Minkowski ver- 
sion of the stochastic vacuum model of [59] ,[45]. The results are encouraging and 
support the idea that the vacuum structure of QCD plays an essential role in 
soft high-energy scattering. We want to point out that these calculations also 
resolve a possible paradoxon of QCD: On the one hand there are suggestions 
that the gluon propagator must be highly singular (probably c( (Q2)-2, cf. e.g. 
[61]) for momentum transfers Q2 _4 0 in order to produce confinement. On the 
other hand high energy scattering amplitudes are completely regular for t --+ 0. 
A singular gluon propagator will lead in the 2-gluon exchange model to a singu- 
larity for t -- 0 not only for quark-quark scattering but also for hadron-hadron 
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scattering if the latter are considered e.g. as colour dipoles. The resolution of the 
paradoxon which we can present is intimately connected with the confinement 
mechanism which we found in the SVM in Sect. 2. The short range correlation 
of the gluon field strengths governs the t-dependence of the hadronic scattering 
amplitudes and gives rise to their regularity for t -- 0. The gluon propagator 
on the other hand can be singular for Q2 __~ 0, since the gluon potentials have 
a long range correlation as we have seen in Sect. 2. The result (3.108) for the 
total cross section depends also on the proton radius. This radius dependence 
does not saturate for large radii in the calculation with non-abelian gluons but 
does saturate in an abelian model [45]. Thus with non-abelian gluons we do not 
get the additive quark model result [17], and thus not the picture of Donnachie 
and Landshoff [23], where the "soft Pomeron" couples to individual quarks in 
the hadrons. The strong radius dependence in (3.108) is due to the D-term in 
the correlator (3.89) which is related to the effective chromomagnetic monopole 
condensate in the QCD vacuum and which gives rise to the linearly rising quark- 
antiquark potential, i.e. to string formation (see Sect. 2.5). The calculations re- 
ported above suggest that in high energy scattering this same term gives rise to 
a string-string interaction which leads to the radius dependence in (3.108). Note 
that one does not have to put in the strings by hand. They enter the picture auto- 
matically through our lightlike Wegner-Wilson loops. The radius dependence of 
the cross section occurs, of course, also for meson-baryon and meson-meson scat- 
tering and gives a quantitative understanding of the difference between the Kp 
and rp  total cross sections and slope parameters at high energies. For this and 
for further results we refer to [45], [62]. The success of the calculation for pp (pp) 
scattering describing correctly the relation of the total cross section versus the 
slope parameter from v~ _~ 20 GeV up to v ~ = 1.8 TeV suggests the follow- 
ing simple interpretation: In soft elastic scattering the hadrons act like effective 
"colour dipoles" with a radius increasing with c.m. energy. The dipole-dipole in- 
teraction is governed by the correlation function of two lightlike Wegner-Wilson 
loops which receives the dominant contribution from the same non-perturbative 
phenomenon - effective chromomagnetic monopole condensation - which leads 
to string formation and confinement. 

4 " S y n c h r o t r o n  R a d i a t i o n "  f r o m  t h e  V a c u u m ,  

E l e c t r o m a g n e t i c  F o r m  F a c t o r s  o f  H a d r o n s ,  

a n d  S p i n  C o r r e l a t i o n s  i n  t h e  D r e U - Y a n  R e a c t i o n  

Let us consider for definiteness again a proton-proton collision at high c.m. 
energy v ~ >> rnp. We look at this collision in the c.m. system and choose as x 3- 
axis the collision axis (Fig. 19). According to Feynman's patton dogma [63] the 
hadrons look like jets of almost non-interacting partons, i.e. quarks and gluons. 
Accepting our previous views of the QCD vacuum (Sect. 2), these partons travel 
in a background chromomagnetic field. 

What sort of new effects might we expect to occur in this situation? Consider 
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P 

Fig. 19. A proton-proton collision at high energies in the parton picture. 

for instance a quark-antiquark collision in a chromomagnetic field. In our picture 
this is very similar to an electron-positron collision in a storage ring (Fig. 20). 
We know that  in a storage ring e -  and e + are deflected and emit synchrotron 
radiation. They  also get a transverse polarization due to emission of spin-flip 
synchrotron radiation [64], [65]. Quite similarly we can expect  the quark and an- 
t iquark to be deflected by the vacuum fields. Since quarks have electric and colour 
charge, they should then emit both photon and gluon "synchrotron radiation".  
Of course, as long as we have quarks within a single, isolated proton (or other 
hadron) travelling through the vacuum no emission of photons can occur, and we 
should consider such processes as contributing to the cloud of quasi=real photons 
surrounding a fast-moving proton. (This is similar in spirit to the well-known 
WeizsEcker-Williams approximation.) But  in a collision process the parent  quark 
or antiquark will be scattered away and the photons of the cloud can become 
real, manifesting themselves as prompt  photons in hadron-hadron collisions. 

In Ref. [14] we have given an estimate for the rate and the spectrum of such 
prompt  photons using the classical formulae for synchrotron radiation [65]. A 
more detailed study of soft photon product ion in hadronic collisions was made 
in [66]. A sketch of our arguments and calculations is as follows. 

In Sect. 2 we discussed the domain picture of the QCD vacuum. In Euclidean 
space t ime we have domains in the vacuum of linear size _~ a. Inside one domain 
the colour fields are highly correlated. The colour field orientations and domain 
sizes fluctuate, i.e. have a certain distribution. If we translate  this picture naively 
to Minkowski space, we arrive at colour correlations there being characterized by 
invariant distances of order a. Then the colour fields at the origin of Minkowski 
space, for instance, should be highly correlated with the fields in the region 

Ix21 <~ a 2 (4.1) 

(cf. Fig. 21). Consider now a fast hadron passing by with one of its quarks going 
right through x = 0 on a nearly lightlike world line. It is clear tha t  in such a 
situation the quark will, from the point of view of the observer, spend a long 
time in a correlated colour background field. An easy exercise shows fur thermore 
that  two quarks of the same hadron will have a very good chance to travel in 
two different colour domains. The argument is in essence as follows. The  quarks 
have a transverse separation of the order of the hadron radius R whereas the 
transverse size of a domain is of order a and we have a2/R 2 << 1 (cf. (2.72)). 



a) 

High Energy Collisions and Nonperturbat ive QCD 

-y, G 

51 

e -  

b) 

e ÷ 

Fig .  20. A quark and antiquark traversing a region o f  chromomagnetic field (a). An 
electron and a positron in a storage ring (b). In both cases we expect  the emission o f  
synchrotron radiation to occur. 

X 0 

worldline of a quark q 

X 3 

Fig .  21. Sketch of  a "colour domain" in Minkowski  space and of  the worldline o f  a 
quark from a fast hadron moving through it. 
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Each quark will then wiggle around due to the deflection by the background 
colour fields in an uncorrelated fashion. This gives us a justif ication for adding 
the synchrotron gluon and photon emission of the  quarks incoherently.  The  
result we found can be summarized as follows: In the overall c.m. sys tem of 
the hadron-hadron collision "synchrotron" photons should appear  with energies 
w < 300 - 500 MeV, i.e. in the very central region of the rapidi ty  space. The  
number  of photons per collision and their  spec t rum are - -  apar t  f rom logar i thms 
- -  independent  of the c.m. energy yrs. The  dependence of the number  of photons  
on the energy w and on the emission angle 6" with respect  to the beam axis is 
obtained as follows for p N  collisions: 

dn- r _ 2~ro~ (/et~)2/a . r ( c o s 6 * )  (4.2) 
dwd cos 6" 0J1/3 

Here a is the fine s tructure constant and/eft  is the length or t ime over which the 
fast quark travelling in the background chromomagnet ic  field Bc obtains by its 
deflection a transverse m o m e n t u m  of order PT ~ 300 MeV, the mean  t ransverse  
m o m e n t u m  of quarks in a h a & o n  (Fig. 22): 

PT (4.3) 
/eft ---- gBe" 

The quant i ty  Z in (4.2) sums up the contributions from all quarks of the initial 

y t 9Bc 
3 

quark 

left 
P 

Fig. 22. A quark moving in 3-direction in a transverse (in 1-direction) chromomag- 
netic field of strength gBc and picking up a transverse momentum (in 2-direction) of 
magnitude ~T over a length le~. Here ~T is the mean transverse momentum of quarks 
in the hadron. 

and final s tate  hadrons.  I t  involves an integrat ion over the quark  distr ibution 
functions of these hadrons. In [66] we found 

0.21 
~(COS6*) ---~ ~ 1 17 ) , ' s ' n  "* '213 (4.4) 

for p N  collisions at xf i  -- 29 GeV. 
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Our result (4.2) for synchrotron photons should be compared to the inner 
bremsstrahlung spectrum 

dn7 bremsstr. 1 dwd cos tO* c( (4.5) w sin 2 tO* 

The "synchrotron" radiation from the quarks (4.2) is thus harder  than  the 
hadronic bremsstrahlung spectrum. This is welcome, since for w --+ 0 brems- 
strahlung should dominate according to Low's theorem [67]. 

It is amusing to note tha t  in several experiments an excess of soft p rompt  
photons over the bremsstrahlung calculation has been observed [68]-[72]. The 
gross features and the order of magnitude of this signal make it a candidate for 
our "synchrotron" process. A detailed comparison with our formulae has been 
made in [66] for the results from one experiment [72] with encouraging results. 
This is shown in Fig. 23 for the kw spectrum of photons at y = 0, where 

k T  = 09 sin tO*, 

y = -- In tan(tO*/2). (4.6) 

We see that  the addition of synchrotron photons to the bremsstrahlung ones 
improves the agreement of theory with the data  considerably. We deduce from 
Fig. 23 left ~ 20 - 40 fm. Taking/eft  -- 20 fm and PT = 300 MeV, we find for 
the effective chromomagnetic deflection field from (4.3) 

RT __ (55 MeV) 2. (4.7) gBc - ~e~ 

This is much smaller than the vacuum field strength (2.7). Our interpretat ion 
of this puzzle is as follows: The colour fields in a fast moving hadron must  be 
shielded. Indeed, a chromomagnetic field of the strength (2.7) would lead to  a 
ridiculously small value for the radius of cyclotron motion of a fast quark. The 
necessary shielding could be done by gluons in a fast hadron. We know from 
the deep inelastic lepton-nucleon scattering results that  a fast nucleon contains 
many gluons. We may even be brave and turn the argument around: in order 
for a fast hadron to be able to move through the QCD vacuum, the very strong 
vacuum chromomagnetic fields must be shielded, making gluons in a fast hadron 
a necessity. Thus soft photon production in pp collisions may give us a quite 
unexpected insight into the quark and gluon structure of fast hadrons. 

The next topic we want to discuss briefly concerns electromagnetic form 
factors of hadrons. 

We have argued above that  the colour fields in the vacuum should give a 
contribution to the virtual  photon cloud of hadrons and we made an est imate of 
the distribution of these photons using the synchrotron radiation formulae. Con- 
sider now any reaction where a quasi-real photon is emit ted from a hadron with 
the hadron staying intact and the photon interacting subsequently. In Fig. 24 
we draw the corresponding diagram for a nucleon N: 

g ( p )  --+ N(p')  + 7(q)- (4.8) 
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Fig. 23. The [kT[ distribution for direct photons emitted at c.m. rapidity y --- 0 in 
p - Be  collisions at 450 GeV incident proton momen tum from [72]. The normalization 
is according to a private communication by H. J. Specht. The background of  decay 
photons is subtracted. The dash-dotted line gives the expected yield o f  photons from 
hadronic bremsstrahlung, the dashed lines show the upper and lower limits including 
the systematic errors in the shape of  the decay background and the bremsstrahlung 
calculation (c£ [72]). The lower (upper) solid line is the result of  the calculation for 
synchrotron photons ((4.2ff.) with le~ = 20 fin (lez = 40 fm) added to the spectrum of  
hadronic bremsstrahlung (cf. [66]). 

N(p') 

Fig. 24. A nucleon interacting by emission of  a quasi-real photon. 
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The flux of these quasi-real photons is well known. The first calculations in 
this context are due to Fermi, Weizs~icker, and Williams [73]. For us the relevant 
formula is given in (D.4) of [741. Let  E be the energy of the initial nucleon, 
G~(Q 2) its electric Sachs formfactor, and let w and q2 = _Q2 be the energy 
and mass of the virtual  photon. Then the distribution of quasi-real photons in 
the fast-moving nucleon is given by 

d (excl) _ a dw dQ 2 (4.9) 

where we neglect terms of order w/E and Q2/m2 g and assume 

2 m2w2 (4.10) 
Q2 >> Qmin -~ E2 

We call (4.9) the exclusive flux since the nucleon stays intact. Now we want to 
translate (4.9) into a distribution in w and the angle 0* of emission of the 7 (cf. 
Fig. 24). A simple calculation gives 

Q2 ~ w2 sin s 0 , ,  (4.11) 

dn(eXci) ,~ 2a dw dO* [G~(w 2 sin2 ~9,)]2 (4.12) 
- -  ~r w sin 0* 

Now we made an "exclusive-inclusive connection" argument in [66]: We require 

dn(eXd)/dwdcosO * to behave as w -1/3 for fixed 0* as we found in (4.2). This 
implies for the form factor GN(Q 2) a behaviour as (Q2)1/6. 

Thus we arrive at the following conclusion: The proton form factor G p should 
contain in addition to a "normal" piece connected with the total  charge and the 
hadronic bremsstrahlung in inelastic collisions a piece c< (Q2)1/6 connected with 
"synchrotron" radiation from the QCD vacuum. For the neutron which has total  
charge zero we would expect the "normal" piece in G~ to be quite small and the 
"anomalous" piece to be quite important  for not too large Q2. Thus the neutron 
electric formfactor should be an interesting quanti ty to look for "anomalous" 
effects c( (Q2)I/n. 

In Fig. 25 we show the data  on the electric formfactor of the neutron from 
[75, 76]. We superimpose the curve 

,~ ( 0 5 )  1/8 
c(syn)(Q = 3 . 6 . 1 0  -2 (4.13) 

which is normalized to the data  at Q2 __ 5 fm -2. We see tha t  except in the very 
low Q2 region we get a decent description of the data. For Q2 _+ 0 (4.13) has to 
break down since G~(Q 2) is regular at Q2 = 0. Indeed one knows the slope of 

n 2 Q2 GE(Q ) for = 0 from the scattering of thermal  neutrons on electrons ([77] 
and references cited therein): 

dG~(Q 2) 
Q2=° = 0.019 fm 2. (4.14) 

dQ 2 



56 O. Nachtmann 

.06 

.04 

.02 

G~(Q 2) 

' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' _ 

I I I I I 

5 

m 

i J i I , , i I I I I I J 

10 15 20 

q2 [fm-2] 

Fig. 25. The data for the electric form factor of the neutron G~(Q 2) from Refs. [75, 76]. 
Dash-dotted line: our naive "synchrotron" prediction c( (Q~)I/¢ (4.13) normalized to 
the data at Q2 = 5 fm -2. Dashed line: the slope of G}(Q 2) at Q2 = 0 as deduced from 
thermal neutron-electron scattering [77]. Full line: the ansatz (4.15). 

We see from Fig. 25 that  the behaviour of G}(Q 2) has to change rather quickly 
as we go away from Q2 __ 0. We will now make a simple ansatz which takes into 
account that  G}(Q 2) can have singularities in the complex Q2-plane only for 

- o o  < Q2 _~ _4m2, 

where rn~ is the pion mass. We require a (Q2)U6 behaviour for positive Q2 and 
take the slope of n 2 Q2 GE( Q ) at = 0 from experiment (4.14). This leads us to 
the following functional form for G}(Q2): 

Q2 ]-5/6 (4.15/ 
G~(Q 2 ) = 0 . 0 1 9 f m  ~.Q2 l + 4 m ~ j  " 

It is amusing to see that  this gives a decent description of the da ta  (Fig. 25). 
What  about the electric form factor of the proton G~(Q2)? Here, clearly, 

we have a dominant "normal" piece connected with the total  charge. We will 
assume that  this normal contribution is represented by the usual dipole formula 

( C~(Q 2)= l+m~/  ' 

rn~) = 18.23 fm-2~0.710 GeV 2 (4.16) 

which gives a good representation of the data  for Q2 = 2 - 4  GeV 2 [78]. Let us add 
to this an anomalous piece for smaller Q2, connected with synchrotron radiation, 
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and let us assume that this is a purely isovector contribution, consistent with the 
singularity at Q2 = -4m~ in (4.15). We obtain then from (4.15) the following 
ansatz for G~(Q2): 

G~(Q 2) = GD(Q 2) - G~(Q 2) = GD(Q2)(1 -- A(Q2)), (4.17) 

where 
Q2 )-5/6. (1+ Q2 )2 (4.18) A(Q 2) = 0.019 fm 2. Q2(1 + ~ m--~D . 

We predict a deviation of the ratio GPE(Q2)/GD(Q 2) from unity for small Q2. 
It is again amusing to note that such a deviation is indeed observed experimen- 
tally [47, 48]. Our ansatz does even quite well quantitatively (Fig. 26). For the 
electromagnetic radius of the proton we predict from (4.17) 

dG~(Q 2) 12 
(r~):  = - 6  dQ 2 IQ2:0 = m 2 + 6.0.019 fm 2 

= (0.88 fm) 2. 

This checks well with the experimental values quoted in [47]: 

(r~) 1/2 = 0.88 ± 0.03 fm, or 

0.92 ± 0.03 fm, 

depending on the fit used for GP(Q 2) at low Q2. 

(4.19) 

(4.20) 

OEJ% 
1.021 

1.00 

a~8~ 
0.96 ~ 

| 

a ~ r  t v ~ n  
" Otsay 
• Orsay 

I • Molnz 
.,,t.., ' ' '  I x S051¢1'" I t 

Cl 2 in i rk  2 

Fig. 26. The ratio G~/GD of the electric form factor of the proton to the dipole fit 
versus Q2. The data points are from various experiments as summarized in [48]. The 
solid line corresponds to the ansatz (4.17), (4.18). 

To conclude this brief discussion of nucleon form factors, we can summarize 
our picture as follows: The quarks in the nucleon make a cyclotron-type motion 
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in the chromomagnetic vacuum field. This leads to a spreading out of the charge 
distribution of the neutron 

pn(x) oc Ix1-1°/3 (4.21) 

corresponding to G~(Q 2) oc (Q2)1/6. The same effect should lead to a deviation 
of the proton form factor P 2 GE( Q ) from the dipole formula for small Q2. Con- 
cerning the sign of G~(Q 2) we can in essence follow the arguments put  forward 
in [79]. 

One might think - -  maybe rightly - -  tha t  these ideas are a little crazy. But  
we have also worked out some consequences of them for the Drell-Yan reaction 
(1.9), which make us optimistic. In the lowest order paxton process contributing 
there, we have a quaxk-antiquaxk annihilation giving a virtual  photon 7", which 
decays then into a lepton pair (Fig. 1): 

q + q --+ 7" -+ l+~- .  (4.22) 

In the usual theoretical framework q and ~ axe assumed to be uncorrelated and 
unpolarized in spin and colour if the original hadrons are unpolarized. From our 
point of view we expect a different situation. Let us go back to Fig. 21 where 
we sketched the world line of a quark of one fast hadron in a colour domain of 
extension Ix21 ~ a 2. Let the quark q and antiquark q in (4.22) annihilate at the 
point x = 0. Here q and ~ come from two different hadrons hi ,  h2 moving with 
nearly light-like velocity in opposite directions. It is clear tha t  in this si tuation 
q and q will spend a long time in a highly correlated colour background field 
(Fig. 27). In [14] we speculated that  this may lead to a correlated transverse 
spin and colour spin polarization of q and ~ due to the chromomagnetic Sokolov- 
Ternov effect [64, 65]. In [80] we worked out this idea in more detail and found 
tha t  a transverse q~ spin correlation influences the ~+~- angular distribution in a 
profound way. Then our colleague H. J. Pirner pointed out to us tha t  da ta  which 
may be relevant in this connection existed already [81]. And very obligingly these 
data  show a large deviation from the s tandard per turbat ive  QCD prediction. 
On the other hand, we can nicely understand the da ta  in terms of our spin 
correlations and thus vacuum effects in high energy collisions. For more details 
we refer to [80]. If such spin correlations are confirmed by experiments at higher 
energies, we would presumably have to reconsider the fundamental  factorization 
hypothesis for hard reactions which we sketched in Sect. 1 and which is discussed 
in detail in [11]. 

5 C o n c l u s i o n s  

In these lectures we have discussed various ideas connected with non-pertur-  
bative QCD and in particular with the QCD vacuum structure. In Sect. 2 we 
introduced connectors, the non-abelian Stokes theorem and the cumulant  ex- 
pansion. Then we presented the domain picture of the QCD vacuum and the 
stochastic vacuum model (SVM). The lat ter  is consistent with the view of the 
QCD vacuum acting like a dual superconductor:  We found that  in the SVM the 
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Fig. 27. Annihilation of  a q~t pair with production of  a virtual photon V* in a colour 
domain. Here q and Ct come from two different hadrons hi and h2, respectively. 

vacuum contains an effective chromomagnetic monopole condensate, whose ef- 
fect is pararnetrized by the D-term in the gluon field strength correlator (2.61). 
With these tools we could calculate the expectation value of the Wegner-Wilson 
loop in the SVM. We found a linearly rising potential between a heavy quark- 
antiquark pair, QQ. This is related to the formation of a "string", a chromoelec- 
tric flux tube between Q Q  as can be seen explicitly in the SVM [52]. Thus in this 
framework confinement is an effect of the nontrivial QCD vacuum structure. All 
calculations in Sect. 2 were done in Euclidean space time. 

In Appendix A we discuss some problems which arise when one considers 
higher cumulant terms in the SVM. We propose as remedy for these problems 
to do the calculation of the expectation value of the Wegner-Wilson loop in an 
iterative way, summing step by step over the contributions of various plaque- 
ttes. This also leads us to a proposal for including dynamical fermions in the 
calculation with the expected result that the linearly rising potential levels off 
and goes to a constant at large QQ separation, where, of course, we have then 
mesons Q~, qQ formed of a heavy quark Q (antiquark Q) and a light antiquark 
q (quark q). 

In Sects. 3, 4 we looked at various possible effects of the nontrivial vacuum 
structure in the Minkowski world. In Sect. 3 we gave a detailed account of a 
field-theoretic method for the calculation of scattering amplitudes of high-energy 
soft hadronic reactions. We started from the functional integral and made high 
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energy approximations in the integrand. This led us to give general rules for 
writing down scattering amplitudes for high energy soft reactions at the patton 
level. Then we considered as representation for hadrons wave packets of par- 
tons. The corresponding scattering amplitudes for (quasi-)elastic hadron-hadron 
scattering were found to be governed by the correlation functions of lightlike 
Wegner-Wilson loops. The evaluation of these correlation functions was possible 
with the help of the Minkowski version of the stochastic vacuum model. The 
comparison with experiment gave very good consistency, supporting the view 
that the QCD vacuum structure plays an essential role in high energy soft re- 
actions. The framework developed in these lectures can be applied directly to 
elastic and diffractive hadron-hadron scattering at high energies. In principle 
we should also be able to apply it to non-diffractive reactions, fragmentation 
processes etc., but this remains to be worked out. 

In Sect. 4 we argued that some more startling QCD vacuum effects in high 
energy collisions may be the appearance of anomalous soft photons in hadron- 
hadron collisions due to "synchrotron radiation" and spin correlations in the 
Drell-Yan reaction due to the chromodynamic Sokolov-Ternov effect. Further- 
more, we gave an argument that electromagnetic form factors at small Q2 should 
reflect the vacuum structure. Finally we would like to mention that in [82] the 
rapidity gap events observed at HERA are quantitatively described in terms 
of the patton model but invoking again nonperturbative QCD effects, possibly 
connected with the vacuum structure. Another place where the QCD vacuum 
structure may show up is in certain correlations of hadrons in Z ° decays to two 
jets [14, 83] for which there is also some experimental evidence [84]. 

We hope to have convinced the reader that the non-perturbative structure of 
the QCD vacuum is useful in order to understand confinement of heavy quarks. 
In our view this vacuum structure manifests itself also in high energy soft and 
hard reactions. We think it is very worth-while to study such effects both from 
the theoretical and the experimental point of view. 
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A p p e n d i x  A :  H i g h e r  C u m u l a n t  T e r m s  a n d  D y n a m i c  
F e r m i o n s  i n  t h e  C a l c u l a t i o n  o f  t h e  W e g n e r - W i l s o n  L o o p  

i n  t h e  S t o c h a s t i c  V a c u u m  M o d e l  

In this appendix we discuss first some problems arising in the calculation of the 
Wegner-Wilson loop in the SVM (cf. Sect. 2.5) if higher cumulants are taken 
into account. Then we outline a possible remedy which may also point to a way 
of including the effects of dynamical fermions in the SVM. We start with the 
replacements (2.79) which allow us to use the cumutant expansion (2.41) for 
calculating W(C). The second cumulant is given in (2.80): 

4 7r 2 
K2(1, 2) ----- ~ ~-~Jr(1, 2), 

where we set with Fu~,p~ as defined in (2.61): 

U(i, j) -- F1414(X (i) - X(J)), 

(A.1) 

(A.2) 

F1414(z) = G2[aD(_Z2) + 1 (  0 0 ) 
24 5 ~11 Z1 + 0-~4 Za (1 - g)Dl(-Z2)] ,  

z 2 : + ( A . 3 )  

With Assumptions 1-3 of the SVM (Sect. 2.4), the next nonvanishing cumulant 
is/(4, for which we obtain from (2.47), (2.60), (2.73), (2.75): 

/ r 2 ~  2 [~'(1, 3)~'(2, 4)O(1, 2, 3, 4) + perm.]. (A.4) K4(1,2,3,4) = - 2  \ 9 2 )  

Here O(1, 2, 3, 4) = 1 if X O) > X (2) > X (3) > X (4) in the sense of the path- 
ordering on the surface S (of. Figs. 8, 10) and O(1, 2, 3, 4) = 0 otherwise. 

We start now again from the expression (2.78) for the expectation value 
of the Wegner-Wilson loop and use the cumulant expansion (2.41) with the 
identifications (2.79). We get then: 

W(C):exp(~(-ig)'S n' ,'"is , (A.5) 

where 
fs~ = f '~r(i)a~(i) J s ~ " l  u--4 • (A.6) 
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In the SVM as formulated in Sect. 2.4 the cumulants for odd n vanish (cf. 
Assumption 3). The lowest contribution in (A.5) is then from n = 2, the next 
from n = 4. Cutting off the infinite sum in (A.5) at n = 4, we get with (A.1) 
and (A.4): 

W(C) : exp { - ~ .  fsl  fs2 K2(1,2) + - -  ~1 ~ ,  /(4(1, 2, 3, 4) } 

----exp{ 14__r2 f f ~c(1, 2) 
2! 3 Js Js2 

- ~ 2 r 4  ~sl "'" ~s4 [Jr(l' 3)Jr(2' 4)O(1, 2, 3, 4 ) +  perm.] } (A.7) 

Consider now the contribution of the second cumulant in (A.7) for a large 
Wegner-Wilson loop (Fig. A1 with R , T  >> a): 

I2 = fs~ / s 2 ~ ( 1 , 2  ). (A.8) 

X4 

y" 

] / l  ~ --~a " \ \  

\ / \ / 

S 

' C - - O S  

> 
R xl 

Fig. A1. The relevant integration region for the integral (A.8). The point (1) runs 
freely over the surface S, the point (2) is constrained to a distance ~ a from (1). 

For fixed integration point (1) on S the integration over (2) will give signifi- 
cant contributions only for a region of radius ~ a around (1) since the functions 
D ( - Z  2) and D1 (-Z2), where Z -- (X (1) -X(2)) ,  are assumed to fall off rapidly 
with increasing Z ~. From (A.3) we see that the Dl-term contributes as a total 
divergence in ~'(1, 2). Thus we can apply Gauss' law in 2 dimensions for it to 
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transform it to an integral over the boundary 0 S  = C. In this way we find a 
contribution from the D1 term of order a4/R 2, a4/RT, a4/T 2. From the D-term 
in (A.3) we get a factor c< a 2 from the integration over (2) in (A.8). Then the 
integration over (1) is unconstrained and gives a factor proportional to the whole 
area of S: 

I2c , :RTa2+O a4,a -~,a 4 . (A.9) 

Put t ing in all factors from (A.3) and using the explicit form (2.65) for the func- 
tion D ( - Z  2) gives for T --+ c~ and R >> a the result: 

1 47r 2 
2~ ---~-I2 =- RTa  (A.10) 

with a as given in (2.83). 
We turn next to the contribution of the 4th cumulant in (A.7) and study the 

integral 
/ 8  

I4 = / 4/0(1,2,3, 4). (A l l /  
J s  1 JS4 

Consider again R, T >> a and fix the integration point (1) (Fig. A2). Then the 
short-range correlation of the field strengths requires (3) and (1) as well as (4) 
and (2) to be near to each other, i.e. at  a distance ~ a. The function 8(1,  2, 3, 4) 
requires (1) > (2) > (3) > (4) in the sense of the path ordering on the surface 
S. Using the fan-type net as indicated in Fig. 8 for the application of the non- 
abelian Stokes theorem with straight line handles from the points X (i) in the 
surface to the reference point Y we see the following. The path-ordering function 
8(1, 2, 3, 4) restricts (2) to be in the hatched sector of S in Fig. A2. In general 
this does not restrict (2) to a region close to (1). On the contrary, (2) can vary 
freely over a triangle of area ~ a.L,where L is of order R or T or in between. 
Thus, the integration over (2) in (A.11) will give at least a factor c< (aT) if the 
hatched triangle has its long sides in X4 direction (cf. Fig. A2). The integrations 
over (3) and (4) in (A.11) should give factors of a 2 each. The integration over 
(1) will give a factor RT. Thus we estimate 

I4 oc RT.a4.aT c< T 2. (A.12) 

This is very unpleasant. The 4th cumulant gives a contribution which domina- 
te__~s over the one from the second cumulant for T --+ oo. There is no finite limit 
for T ~ co in the expression (2.77). The quark-antiquark potential comes out 
infinite. 

This problem was recognized in Ref. [52] and eliminated by hand making 
an additional assumption: that  all but the leading powers in the quotient of 
the correlation length to the extension parameters R, T of the loop could be 
neglected. Another simple cure of the problem would be to postulate instead 
of Assumption 3 (cf. (2.73)-(2.75)) a behaviour of the higher point correlation 
functions of the shifted gluon field strengths which gives precisely zero for the 
cumulants K,~ with n > 2 in (A.5). In our opinion this would be an unsatisfactory 
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X4 

S 

' C = O S  

Y 1, 

( 4 ~ \ \  <a 

R 
> 

o x~ 

Fig. A2. The relevant integration region for the integrM (A.11). The point (1) runs 
freely over S. The points (1), (2), (3), (4) are ordered in the angle as seen from the 
reference point Y due to the path ordering function 8(1, 2, 3, 4). The points (1), (3) 
and (2), (4) m u s t  be at a distance ~ a to each other. 

solution, since the model would then only work for a part icular  fine-tuned set of 
correlation functions whereas generically the above problem would remain. 

We think that  the origin of these difficulties in the SVM is Assumption 1, 
which states tha t  the correlator should be independent of the reference point  Y 
for arbi t rary Y. But  why should the field strength correlation (2.60) (cf. Fig. 5) 
be the same if we use a straight line path  C x  + C x ,  to connect X and X ~ or a 
path which runs on a loop behind the moon? We will replace Assumption 1 by 
a milder one: 

- A s s u m p t i o n  1':  F~vp~ in (2.60) is independent of the reference point Y 
and of the curves C x  and C x ,  if the reference point Y is close to X and X' :  

I x  - r l  ~ a', i x '  - YI ~ a', 

where a ' is of order of a. 

Now we t ry  to calculate the expectation value of the Wegner-Wilson loop (2.76) 
using only this weaker hypothesis. We star t  from the rectangle S of area R T  
and insert a smaller rectangular loop C1 with sides R - 2a', T - 2a'. On C1 we 
choose Nx reference points ]I1, .... YN1 and we part i t ion the area between C and 
C1 in N1 plaquettes P1, ...,PN1 of size .~ a '2 (Fig. A3). 

We can now apply the non-abelian Stokes theorem. We star t  from Y0 on C 
and construct a path  equivalent to C in the following way: From Y0 to Y1, then 
in a fan-type net over the plaquette P1 with Y1 as reference point, etc., until  we 
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X4 

P.~'1-1 

PN, 

T 
a I 

l C1 = OSl 

=Y'~" - ~  ... 

I I 
P2 / / /  11 . . . .  

Yo 

C - - O S  

S 

4 

R X~ 

Fig .A3.  The rectangle S, C = OS and N1 reference points YI,.. . ,YNI on the curve 
C1. The area between C1 and C is partitioned in N1 plaquettes P1, ..., PN1. 

arrive at YN1 =-- Y1 from where the path  runs back to Y0. According to (2.36) we 
get then: 

W(C) = lZ~(Vo,NI V(PN~)VN1 NI-1 Y2,1r(P1)Vl,o), (A.13) 

where 

V (Pj) = P exp [ - ig/p~ G~4 (Yj, X(J); Cx(J))] (A. 14) 

and V~j are the connectors from Yj to Y~ on straight lines. 

- A s s u m p t i o n  4: Now we will make a mean field-type approximation and re- 
place the path-ordered integrals over the plaquettes Pj by the corresponding 
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vacuum expectation values: 

V(Pj) --+ (V(Pj)) .  11. (A.15) 

This is similar in spirit to the "block spin" transformations considered in [85]. 
For the r.h.s, of (A.15) we can use the cumulant expansion and Assumptions 1', 
2 and 3 of the SVM. Here the reference point Yj is never too far away from X(J). 
We get with 11 the unit matrix in colour space 

= 11- exp { - IV~la[1 + O ( ~ a . a . a ' ) ] } .  (h.16) 

Here we cut off the cumulant expansion at n = 4 and use the results and esti- 
mates (A.7)-(A.12), but now for each plaquette Pj instead of the whole surface S. 
We see that the correction terms from the 4th cumulant are now of manageable 
size since (cf. (2.70), (2.85)) 

a a a ' = ( ~ ) o ' a 2 = 0 . 5 6 ( ~ ) = O ( X ) .  (A.17) 

Then (hopefully) the factorials l /n! in the cumulant expansion will lead to small 
corrections from higher cumulants. 

We can now insert (A.15), (A.16) in (A.13) and get 

1 V , W(C) "~ -~Tr(Vo,NI <V(PN,))VN1,NI-1... 2j <V(P1))V1 o) 
Nx aaa' 

= 1Tr<Vo,NIVN,,N~_I...V2,1VI,o>.exp{- ~ IPjla[1 + O(--~--.w 1] } 
5=1 

1 ( aaa' ~ ] 
= -~Tr<VN~,Na-1...V2,1)exp{ -- ( [S I -  ISll)a[1 + o , - ~ - ,  ,j }. (A.18) 

Here we used also the cyclicity of the trace and VI,oVo,N1 = 11 (cf. (2.24)). The 
product of the remaining connectors in (A. 18) gives just the Wegner-Wilson loop 
of the curve C1 = 0S1 in Fig. A3 and we obtain: 

W(C) = W(Ct)exp { - ( I S [ -  [St[)a [1 + 0 (A.19) 
k 4! ] ] j "  

The procedure can easily be repeated by inscribing a rectangle $2 with boundary 
(32 = 0S2 in St etc. The final result of this iterative procedure obviously is: 

W ( C ) = e x p { - I S l a [ l  + O ( a a a ' ~ l  (A.20) 
\ 4! ] J ~ "  
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From this we deduce for the "true" string tension in the SVM: 

~ a a a " ~ ]  = a [1 + terms of order 5%] (A.21) a t r u e = a  1 + O \  4! ] J  

where a is given in (2.83). Thus we have justified the result for the string tension 
in Sect. 2.5, where we used the second cumulant only. We have now relied on 
Assumption 1' and avoided t ranspor ta t ion of field strengths to far away reference 
points Y. The fourth cumulant is est imated to give only a correction of a few 
percent and the contribution of the 6th, 8th, etc. cumulants can be est imated 
in an analogous way to be even smaller 1. Most important ,  we have avoided the 
unpleasant result (A.12). 

We will now discuss another question which can be raised in connection with 
the calculation of W ( C )  in the SVM. Why should we span a minimal surface 
S into the loop C and not use some other,  more complicated surface S I with 
the same boundary, OS t = C? From the point of view of applying the non- 
abelian Stokes theorem (2.37) any wiggly surface S ~ would be as good as the flat 
rectangle S which is the surface of minimal area. However, from the point of view 
of the iterative calculation with the plaquettes,  as explained in this appendix,  
an arbi t rary  surface S t is clearly not equivalent to S. In (A.15) we made the 
approximation of replacing V ( P j )  ( j  = 1, ..., N1) by its vacuum expectat ion 
value. This should be a good approximation if the various plaquettes are well 
separated. Indeed, we would expect tha t  then we can perform the functional 
integral over the variables related to the regions in Euclidean space t ime where 
the various plaquettes are located in a separate and independent way. If, however, 
two plaquettes overlap or are very near to each other,  the above approximat ion 
will break down. The point is now that  on the minimal surface S neighbouring 
plaquettes will be at maximal distance from each other. For some arbi t rary  
surface S t with wiggles we will inevitably find plaquettes closer together  which 
will make our approximation worse. This gives us some rationale to use a minimal 
surface S in the applications of the non-abelian Stokes theorem in the framework 
of the SVM. 

So far our calculations should apply to QCD with dynamical  gluons and 
static quarks only. The quark-antiquark potential  V ( R )  in (2.84) rises linearly 
for R -+ ~ .  In real life we have, of course, dynamic quarks. If we separate a 
heavy quark-antiquark pair QQ start ing from small R we will first see a linear 
potential  as in (2.84) but  at some point the heavy quark Q (antiquark (~) will 
pick up a light antiquark ~ (quark q) from the vacuum and form a meson Qq 
(~)q). The two mesons can escape to infinity, i.e. the force between them vanishes, 
the potential  V ( R )  must go to a constant as R -+ co: 

V ( R )  --4 V ~  for R ~ co. (A.22) 

1 Numerical studies suggest that a I ~ 3a should be large enough for obtaining the 
area law for the plaquettes Pj in (A.16) (H. G. Dosch, private communication). We 
obtain then aaa ~ ~- 1.7 and still correction terms ~ 10 % in (A.21). 
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Can we understand also this feature of nature in an extension of the SVM? 
Let us go back to the approximation (A.15), where we have replaced the 

integral over the plaquette Pj by its vacuum expectation value. More generally 
we can argue that  V(Pj)  as defined in (A.14) is an object transforming under a 
gauge transformation (2.17) as follows (cf. (2.20)): 

Y(Pi)  -+ U(Y j )V(P i )U- I (Y j ) .  (A.23) 

Any approximation we make should respect this gauge property and indeed 
the replacement (A.15) does. Now we can ask for a generalisation of (A.15) in 
the presence of dynamic light quarks. We have then the quark and antiquark 
variables at the point Yj at our disposal and can construct from them the object 

q(Yj)q(Yj) (A.24) 

which has the gauge transformation property (A.23) and is also rotationally 
invariant. Let us consider only u and d quarks. Then we suggest as generalization 
of (A.15) the following replacement: 

VAB(Pj) ~ (V(Pj))O~AB --w(Pi)qA,.f,c~(Yj)FtBj,a(Yj), (A.25) 

where A, B are the colour indices, f = u, d is the flavour index and a the Dirac 
index. Furthermore, (V(Pj))o is as in (A.15), (A.16), and w(Pj) is a coefficient 
depending on the size of the plaquette Pi. It can be thought of as representing 
the chance of producing a qq pair from the vacuum gluon fields over the plaquette 
Pj. (This is inspired by the discussions of particle production in the LUND model 
[54]). On dimensional grounds w(Pj) must be proportional to a volume, thus we 
will set 

w(Pj) = clPjl . a, (A.26) 

where c is a constant. The idea is that  qq "production" should feel the gluon 
fields in a disc of area {Pjl and thickness a. 

We can now insert the ansatz (A.25) in (A.13). The resulting expression for 
W(C)  is of the form: 

W(C)  ~- 1Tr(Vo,N,[(V(PN~)) - W(PN1)q(YN~)q(YN1)]VN~,NI_I 

• ..V2,1[(V(P1)) - w(P1)q(Y1)q(Yi)]" VI,o). (A.27) 

If we mutliply out these brackets we get terms where we have again the Wegner- 
Wilson loop along C1 (Fig. A3) but then also terms where quarks and antiquarks 
at different points Yk, Yt are connected. For two neighbouring points, for instance, 
k = l + 1, l this would read: 

...q(Y~+l)[-w(l)q(l~+l)Vt+l,~q(Yl)]q(Y~)... 

The importance of these terms will increase with increasing w(Pj).  Starting 
from (A.27) we can now inscribe plaquettes into the rectangle $1 and transport  
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everything, including the quark variables q(Yk)q(Yk)(k = 1, ..., N1) to a curve 
C2 etc. 

To get an orientation we will now make a drastic approximation:  For a loop 
with R << Re, where Re is some critical value to be determined, we neglect 
the dynamical quarks, saying tha t  the w(Pj) factors will still be too small. The  
result for W(C) and V(R) in the range a ~ R ( (  Rc will then be as in (A.20): 

W(C) = exp( -RTa) ,  

V(R) = oR, 

(a ~ R << Re), (A.28) 

where we set O'true ~ O'. 
In the other limiting case, R >> Re, we can expect the q~ terms in (A.27) to 

dominate. Indeed, let us s tar t  with the loop C with sides R and T of Fig. A3 
and inscribe first plaquettes P1 ..... PN1 of size a ~2. Wi th  the replacement (A.25) 
this gives for W(C) the expression (A.27). Now we inscribe plaquettes of size a '2 
in the loop C1 and parallel t ransport  everything to a smaller loop C2. The new 
element is tha t  we will now have to parallel-transport  also the quark variables, 
but  this poses no problem. We will again obtain an expression like the one shown 
in (A.27) but  now for the curve C2 and with increased weight factors w in front of 
the qq terms. We assume that  we continue this procedure. Finally, we will obtain 
an expression like (A.27) but  with the terms involving the quark variables at the 
reference points ~ dominating the expression. Thus we set: 

W(C) ="~ 3Tr<[-w(N)q(N)q(N)]VN, N-1...[--w(1)q(1)q(1)]V1 , g), (A.29) 

where the points 1, . . . ,N are on a curve C ~ of sides R~,T ~. This summing up 
of quark contributions from various plaquettes of size a ~2 should be reasonable 
as long as the quarks are inside an area corresponding to their own correlation 
length, ax, the chiral correlation length. This can be est imated from the be- 
haviour of the non-local qq condensate [86-88] for which one typically makes an 
ansatz of the form (q = u, d): 

= <clq>  (A.30) 

Here ({q) is the local quark condensate for which we set, neglecting isospin 
breaking (cf. [39]): 

1 (qq} = ~(fiu +dd) = -(0.23 GeV) 3. (A.31) 

For the correlation length a x one estimates (cf. [88]): 

a x ~ 1 fm. (A.32) 
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It will be reasonable to choose the reference points 1, ..., N on C'  also such tha t  
the distance between neighbouring points is a x. Then  

R' = R - 2a x, 

T' = T - 2ax, 

g = 2T' + 2R' _ 2(T + R) 8. (A.33) 

a X a X 

We will now estimate W(C)  from (A.29) as product  of the expectat ion values 
of the nonlocal qq condensate. We set 

2 (A.34) w(1) = w(2) . . . .  w(N)  = c .aax, 

where c should be a numerical constant of order 1. Fur thermore we have from 
(A.30) 

q B , : , , . ,  (J -- 1)> 

= l(f / / ,6a ,a , (qq)  exp [ [ X J - ~  -112 ] 

' a x J 

1 
= ~eSf,:,6,~,a, (qq) (A.35) 

for IXj - X j - l l  = ax. This gives: 

1 
W(C)  ~- --~. {[.w(N)(qI~,,~.(1)V1,N ql~v,,~N(N))] 

• .. [-w(1)(c]f2,,~2 (2)V2,1 qI,,.~ (1))]} 
N 

= - - m  

3 4e 

- 38[ w(1)(~lq>]['~-~ 

For the potential  this leads to 

(A.36) 

V ( R ) = -  lim 1 InW(C)  = 2 In 4e 
T-~c¢ T a x [-w(1)(qq>] ---- Vc~. (A.37) 

Thus we find indeed a constant potential  for R --~ c~. 
For intermediate values of R the potential  should change smoothly from the 

linear rise to the constant behaviour. As a crude approximation we will assume 
the potential  to be continuous but tu rn  abrupt ly  from one to  the other  behaviour  
at a critical length R = Rc which we define as 

Rc = Vcc/a. (A.38) 

Our simple ansatz for V(R)  is then as follows (cf. Fig. A4): 

aR  for R < Re, (A.39) 
V(R)  = V~ = aRc for R > Rc. " 
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Fig. A4. The potential V ( R ) as defined in (A.39) with Rc the "string breaking" radius. 

How does the numerics work out taking (A.37) and (A.38) seriously? We can 
estimate the constant V~ crudely from the mass difference of two B-mesons and 
the T resonance 

V~ ~ 2mB - m r  -~ 1.1 GeV. (A.40) 

With  a from (2.85) we find for Rc (A.38): 

Rc -~ 1, 2 fm. (A.41) 

A much more elaborate estimate of the string-breaking distance gives [89] Rc <_ 
1.6 to 2.1fm. The lattice calculations of [90] suggest an even larger value for Re. 
From (A.40) and (A.37), (A.32) we get for w(1) and c: 

4exp[1 - ½a×V~] = 0.42 fm 3, = 

c -  - -  -- 1.2. (A.42) 
a~a 

Thus the probabili ty factor w(1) comes out as we est imated it on geometrical  
grounds in (A.26). 

With these remarks we close this appendix. Of course, much more work 
is needed in order to decide if our simple ansatz for incorporating dynmical  
fermions in the stochastic vacuum model is viable or not. 

Appendix  B: The Scattering of G l u o n s  

In this appendix we will discuss the contribution of gluons to the scattering 
amplitude of a general par ton reaction, generalizing (3.50): 

G(1) + G ( 2 )  + ... +q(k) + ~(k') + ... -4 G(3) + G ( 4 )  + ... +q(l) +~(l') + .... (B.1) 
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Here, as in all of Sect. 3, we use the convention that  partons with odd (even) 
number are moving fast in positive (negative) xa-direction. Consider thus the 
transition of a right-moving gluon: 

a (1)  --- a(Pl ,e l ,a l )  -+ a(3)  - a(P3,E3,a3), (B.2) 

where al,3 (1 < al,3 _~ 8) are the colour indices, P1,Pa are the momenta  with 
PI+, P3+ --~ co, and E1,3 are the polarization vectors which satisfy: 

P1E1 = 0,  

P3E3 = 0,  

= = 1. (B.3) 

In the high energy limit the vectors El, 3 are transverse with corrections of or- 
der IPTl,al/P+l,3 which we can neglect. We will argue that  such a gluon in a 
high energy soft reaction is equivalent to a quark-antiquark pair with the same 
quantum numbers in the limit of the q and ~ being so close to each other in 
position space that  their separation cannot be resolved in the collision. From 
the contribution of such a q~ pair to the scattering amplitude we will get in the 
above limit the gluon contribution. 

We start by constructing wave packets similar to the mesonic wave packets 
of (3.66) 

Iq~l;pj,~j,aj)= f dzpT~o 1 l hj d ~  (ff, lpTI). 

£( oj)A A,j ( . j" Iq(P , '5, - 2 
(j = 1,2,3,4),  (B.4) 

where pj is as in (3.67), (3.68) and 

We require the functions h j to satisfy: 

(hi(C, IPTI))* = hi( ( ,  IPT[), 

hi(C, ]PTI) = M(1 -- ¢, IPTI), 

d2pT de 2~(1 - ~)lhJ(¢, IpTI)l 2 = 1. (B.6) 

This gives us the normalization of the states (B.4) as 

' ' ' - '* .¢jSa; ,aj(2r)32p°~a(P~-Pj) .  (B.7) (q~l; P~, ~j, ajlqq, Pj, Ej, aj) = ~j 
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The q~ states (B.4) have the same transformation properties under a parity 
(P) charge conjugation (C) and time reversal (T) transformation as a gluon 
state: 

U(P)lqq; p0, p,  ~, a) = -Iqq; pO, _ p ,  e, a), (B.8) 

U(C)]qq;P°,P,E,a) = - Iqq;P° ,P,E,b)  • 1Tr(~b$T), (B.9) 
Z 

, 1 T V(T)lqq; pO, p ,  e., a) = -]q~l; pO, _ p ,  e , b)"~r~()~b~ a ). (B.10) 

Here U(P), U(C) are the unitary operators, V(T) is the antiunitary operator 
representing the P, C and T transformations, respectively, in the Fock space of 
patton states. 

As in (3.71) we define the wave functions in transverse position space and 
longitudinal momentum fraction: 

~J(¢,YT) := V/2ff(1 _ ¢ ) 1  / d2pT exp( ipr ,  yT)hJ(¢, iprl)" (B.11) 

Here we also define for the right (left) movers the wave functions in y_, yT space 
(y+, YT space) as: 

1 1 i 1)y_], 
~J(Y- ,YT)  := ~ x / - P ~ j +  f0 de qoJ((,yT)exp[--~Pj+(( -- 

(j odd), (B.12) 

1 [ 1  i F 1 
~J(Y+,YT) := ~ PV/~j_ ~ d~ 7~J(¢,yT)exp[--~ j_(¢ -- ~)y+], 

(j even), (B.13) 

The normalization condition (B.6) implies: 

fdu+fd%,l (U+,yT)12=X (Seven). 

To realize the condition that the q# pair acts like a gluon, we require for right 
(left) movers that they have similar longitudinal momenta and that their wave 
function in the relative q-q coordinates, y_, YT(Y+, YT) is nearly a 6 function. 
To be concrete, we require: 

1 
7~J(¢,yT) ~ 0 only for Iff-- ~] < ~0, (B.15) 
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where 
1 

0 < ~o << {, (B.16) 

and for j odd: 

1 
~ J ( Y - , Y T ) # 0  onlyi f  l Y - I ~  and lYrt<<a" 

r+Co 
(B.17) 

For right movers we replace plus by minus signs in (B.17). Any qq wave packets 
with these properties should then look identical to a gluon for an observer in the 
femto universe with regard to "soft" scatterings. 

Now we replace G(1) and G(3) in reaction (B.1) by the qq wave packets (B.4). 
According to the rules derived in Sect. 3.5 the scattering of the qq system 

q(1)¢(1') --+ q(3)¢(3') (B.18) 

gives the following factor in the S-matrix (cf. (3.58) (3.59)): 

,,qq+ (3, 1)$#+(3', 1') 

which still has to be integrated over the wave functions (B.4). In this way we 
obtain for the qq-pair: 

1 1 I 3 , 

,.qqq(3, 1) = / d 2 P ~ / o  aC (c , 'P~')hl(( ,[PT[) 

1 , 1 
-~(~as)A's,As(E3 " ~T O')s'3,s3 "~(~al)A1,A~ (El"  O'e)sl,s' 1 

Sq+(3, 1) Sq+(3', 1'), (B.19) 

ip, exp[~( 3+ - Pz+)z- - i(P3 - P1)TZT] ~3*(V--,YT)~I(V--,YT) 
1 1Tr[AasV-(oo, z -  + l y - , z T  + ~YT) 

A~, V~ (oo, z_ 1 1 - ~y_,  ZT -- ~YT)]. (B.20) 

(y-,yT)~5 (Y-,YT) acts like a 6-function at With our assumptions (B.17) .~3., 1 
y _  = 0, YT = 0 and we get: 

Sqq(3,1) = E; -e l  

f dy_ f d2yT ~ 3 * ( y - - , y T ) ~ l ( y - - ,  y T  ) 

i f dz_f d2zT exp[~(P3+--PI+)Z----i(P3--P1)T'ZT] 

1Tr[Aa3 V_ (oo, z_, ZT)Aa: V! (oo, z_, zr)]. (B.21) 
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An easy exercise shows that 

1Tr[Aa3V-(c~,z_,zT)AalVt_(c~,z-,zT)] = r - (c~ ,  z- ,  ZT)a3,al, (B.22) 

where V_ is the connector analogous to (3.35) but for the adjoint representation 
(cf. (2.22)): 

/? V-(~,z- ,zT)  = P { e x p  [ - 2 g dz+a"_(~+,~_,~.T)To]}, 

(To)~ = I= A~o. (B.23) 

The fabc are the structure constants of SU(3)c. Inserting (B.22) in (B.21) gives 

/ dy_ / d2yT ~3*(y-,yT)(~l(y-,yT)e;j3 Clj, SG+(3, 1), (B.24) Sqq(3, 1) 

where 

8G+(3,1) = ~ 6ja,jl / dZ- / d2ZT 
i 

exp [~(Ps+ - P1+)z- - i(PaT -- PIT)" ZT] 

V-(CV, z-, zT)as,a,. (B.25) 

In a general scattering reaction (B.1) the factor ,Sqq(3, 1) (B.24) has to be 
inserted with other factors Sq, £q, ... and then integrated over all gluon potentials 
as explained in Sect. 3.5. We note that 8qq(3, 1) in (B.24) factorizes into SG+ (3, 1) 
(B.25) times the overlap of the internal wave functions of the incoming and 
outgoing qq pairs: 

f dy_ / d2yT ~3*(y-,yT)(~l(y-,yT). (B.26) 

This means that the qq pair will come out with some distribution in total momen- 
tum P3 and polarization vector e3 = el but always with internal wave function 
~51 (Y-, YT). With the conditions (B.15)-(B.17) 951(y_, YT) leads to a "permissi- 
ble" internal wave function for a qq pair of momentum P3, to be regarded as a 
gluon of momentum P3 by our observer in the femto universe. Indeed we have 
from (B.12): 

i - ~ 1 ~ - t  , P/-P-~- [~d¢ ~l ( ( ,yT)  exp[-~Pl+(~ 
~51(Y-'YT) = V '~-~ Jo 

4 p ~ fl/2 11 i 
= d~ (p (2 - t-~,YT)exp[-~Pl+~. y-] 

V 4r  J-1/2 

P ~ ¢ +  1 i , 
= v  4 .  _ d~'~'~(~+~"yT)exp[-~ P3+~ (B.27) 
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Here we define the internal wave function of the outgoing q~ pair as 

P3+ ~', y T ~Ot3 (1 ~- '" YT) ~-~ P/-~-3T (~1 ( 1-~- Pl-l- ) (8.28) 

PI+ 1 (8.29) 
and ~+ = =t= P3+ " 2" 

The condition (B.15) for ~o 1 guarantees a similar condition for ~o '3 if P3+/PI+ 
is of order 1, as we will always assume. Thus the integration limits ~+ in (B.27) 
can be replaced by -4-1 and also the normalization conditions (B.14) can easily 
be checked for ~o ~3. 

To summarize: In this appendix we have shown that  suitable q~ pairs which 
are indistinguishable from gluons for our observer in the femto universe scatter 
as entities in a soft reaction. Their internal wave function in momentum space 
is modified, but in a way not observable in a soft reaction. Thus we can consider 
So+ (3, 1) in (B.25) as the scattering contribution of a right-moving gluon in the 
transition (B.2). We quoted this result already in (3.64) in Sect. 3.5. For left 
moving gluons we just have to exchange everywhere + and - components. 

Appendix C: The Scattering of Baryons 

In this appendix we discuss high energy soft reactions, in particular elastic re- 
actions involving baryons and antibaryons. We represent baryons by qqq wave 
packets: 

1 /  
]B~(P~)) = 6.  (2~r) - - - - - - i  d# hJ(.fi, s ' ,~i,p~,) • 

e A, A2 A3 ]q(p} , ] 1, s 1, At) ,  q(P~', f2,  s 2, A2), q(p~, fa,  s ~, A3)). (C.1) 

Here f i ,  s i, A i (i = 1, 2, 3) are the flavour, spin, and colour indices of the quarks 
and eABC (8123 = 1) is the totally antisymmetric tensor. For the momenta  p~. we 
set for right-moving baryons (j odd, Pj+ -+ oo): 

P•'d- ----" i ¢ 

i 1 • 
PiT - ~ -  -~P jT + P~, 

(i : 1 , 2 , 3 )  (c.2) 

and for left-moving baryons (j even, Pj_ --+ oo): 

i i R P j _ = ~  j - ,  

P~T ----- 1 ~PjT  -t- p~,  

(i : 1,2,3). (c.3) 



High Energy Collisions and Nonperturbative QCD 77 

The integral with the measure d# stands for 

fl r e . =  f f f d2p~,8 ' (E p~ > • H d'iS(1 - E (~'>" (C.4> 
i=i /=i /=i i : l  

The flavour and spin of the baryon states (C.1) is, of course, determined by the 
functions h j which must be totally symmetric under simultaneous exchange of 
the arguments ( f i  s ~, ¢i, p~) for i = 1, 2, 3. In the following we will collectively 
set (f, s, ¢, PT) -- a and q(a, A) ~ q(pj, f, s, A). We have then 

h j (a, fl, 7) = hJ (fl, a3') = h j (a, % fl). (C.5) 

1/  
IBj(Pj)) - -  6.(21r)3 d# hJ(oqfl, v)eABctq(o6A)q(fl, B)q(%C)}. (C.6) 

The normalization condition 

(Bj (P;)]Bj (Pj)) = (2r)32p°53 (P~ - Pj) (C.7) 

requires h j to satisfy: 

f d# (a, fl, 3') (a, fi, 7) = 4~ 1 ¢3 h j h j 1 

(no summation overj). (C.8) 

We define the wave functions ~o j in transverse position and longitudinal momen- 
tum space and the transition profile functions wk~ for Bj --+ Bk as: 

3 3 
1 Ha p . vJ(fi 'si '~i'XT) "-- (271")2 i----1 i= l  

3 
6. (41¢24a) 1/2 exp(i E P~'" x~")M(al' as'  a3), (C.9) 

1 1 1 3 3 
:=  

i : l  i-~l 

f i  ,8 i 

~01 ( f l ,  81 ' ¢1, x l ;  f2, 82, ¢2, X2;  f3 ,  83, ¢3, X3) .  (C .10)  

The symmetry relations for h (C.5) and the normalization condition (C.8) imply: 
B 1 2 3 B 2 1 3 B 1 3 2 

= XT~ XT),  Wk,j(XT, XT,XT) (C .11)  Wk,j(XT, XT, XT) = Wk, j (XT, 

f { l '~ l  3 B 1 2 3 d2x~, 62(x~, + x 2 + XT)Wjj(XT, XT,XT) = 1 

(no summation over j). ( c .12)  
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Bt(P1) + M2(P2) -+ B3(Ps) + M4(P4). 

From the rules of Sect. 3.5 we get 

Szi ~ (B3(P3), M4(P4)ISIBI(P1)M2(P2)) = 

l fd.'h~*(~',~',7')~A,B,c, fd .  hl(~,~,'y)~ABC 6(2r) 6 

f / o ' f 1 '  1 d2p~ de' d2pT d i  4* , , 2 h s,s'4 ( ( ,  pT)h,2,'2 (¢, PT) 3(2r) 3 

<s~+ (~', ~)~,As~+ (Z', Z)B, BS~+ (% ~)c,c 
(~A,2A 2 ~A,4A4Sq_ (4, 2)A4AzS q_ (4', 2')A~A, 2 >G" 

After some straightforward algebra we get: 

S/, = 5]i + i(2r)45(P3 + P4 -/91 - P2)T/,, 

As a concrete scattering reaction let us consider meson-baryon scattering: 

(C.13) 

(C.14) 

i 
(2~r)6 fd,' h'(~',Z',~') 

f ' I11:¢"¢I d# h l (v~,t3,"f) H (@,,s,~,,, ,,)(p,+ ) 3 
i----1 Li----1 J 

1 f d2p ,T  fold(, /d2pT fold(h4,,r(~,p,T)h2,r(~,pT) 
2(P2_) 2 [¢"(1 - ~')¢(1 - ~)]~/2 

,. 

3 

f, ,+, ' , ,  ox. {,~ [~-.~+(¢"- ¢,.'_- (p~.--p~'" x~] 

+ i l p 2 -  (( '  - ()Y+ - i(P~ - PT)" YT} 

1 b 1 b <{V-(°°'xl '  5 T 'I-X1)A'AV-(oO, X 2, 5 T 'F X2)B'B 

3 1 1 
V_(co, x_ ,  "~bT + x~.)C'C -~A'a'C' ~ABC 

1 t 1 b 1 1Tr [V+ (y+, co,--lbT + ~YT)V; (0, co,-~ T -- ~YT)] -- 1})G, 
(c.ls) 

where 
qT = (P1 - P3)T. (C.16) 
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Now we make the transformation of variables 

2 
y+ --+ p---~y+ 

and use PI+ ~ Co, 
(3.77) to (3.79) we get 

(c.17) 

P2- -+ Co. With the same arguments which led us from 

= --2is f @bTexp(iqT'bT) f flI 62(x "+ + 

w B 1 / 2 d yTw4,2(yT ) 3,1k T~ 

1 b 1 <{V_(co, O, ~ T -~ X~)A, AV-(o0, O, ~bT + X~.)B,B 

1 3- 1 , 
V-(co, O, 5bT + XT)O,C~6A, B O, eASC 

Tr IV+ (0, oo, 1 1 t 1 1 --~bT + ~yT)V¢(0, Co,--~bT -- ~YT] -- 1}> G. 

(c.18) 

Here w~2(yT) is the transition profile function for the mesons as defined in (3.72) 
and w~l is the corresponding function for the baryons (cf. (C.10)). 

In the next step we follow [59], [45] and use relations which are valid for any 
3 × 3 matrix: H = (HAB): 

HA'A" HB'B" Hc'c" " eA"B"C" = det H . eA,B,c, , (C.19) 

det H • ~A,B,C, 6ABC "~ 

HA, AHB, BHc, c + HA, BHB, cHc, A + HA, CHB, AHc,B 

--HA,BHB,AHc, c -- HA, AHB, cHc,B -- HA, CHB,BHC, A. (C.20) 

We take H equal to the antiquaxk line integral at the central point of the baryon 
in transverse space: 

1 
H -- V*(co, 0, ~bT). (C.21) 

As a SU(3)-connector V_* satisfies 

1 
det V_*(co, 0, ~bT) = 1. (C.22) 

This is easy to prove. From (C.19) we see tha t  det V_* is the connector in the 
singlet part of the product of three SU(3) antiquark representations: 3 × 3 x 3. 
But for the singlet representation the connector equals 1 since we have to set 
To = 0 in (2.22). 
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In the following we will use as shorthand notation 

1 i V(i) =- V_(c¢,O, ~bT +XT), 

(i = 1,2,3), 
1 

V(0) -- V_(c¢, 0, ~bT). (C.23) 

With this we get for the qqq=contribution to the integrand in the functional 
integral in (C.18) using (C.20) to (C.22): 

W BIlL X 1 X 2 X ~ - ) : :  6V(1)A,AV(2)B, BV(3)C,C eA, B,C'eABC +k~atT~ T, T7 

i = ~ {Tr[V(1)Vt(0)] • Tr[V(2)V$(0)]. Tr[V(3)Vt(0)] 

+ Tr[V(1)Vt (0)V(2)V t (0)V(3)V' (0)] 
+ Tr[V(1)V$(O)V(3)V'(O)V(2)V$(O)] 
- Wr[V0)V' Wr[V(3)Vt(0)] 
- Tr[V(2)V' (0)V(3)V t (0)]. Tr[V(1)V' (0)] 
-Tr[V (1)Vt (0)V(3)V ) (0)]. Tr[V(2)V ) (0)1 }. (C.24) 

As for the meson case (cf. (3.82)) we will now add suitable connectors at +c~. In 
this way all the traces in (C.24) become closed light-like Wegner-Wilson loops. 
To give an example: The term 

~[V(1)V t (0)V(2)V t (0)] 

should then be read as the loop in the hyperplane x_ = 0 in the limit T -+ c~ 
which connects the following points (x+, x_, XT): 

1 b (T, 0, ~ T), 

1 
( -T ,  0, ~bT), 

( -T ,  0, 2 b T  + x 2 ) ,  

1 b (T,0, T 

1 b (T, 0, ~ T), 

1 
( -T ,  0, ~bT), 

1 b X 1 ( -T ,  0,~ T +  T), 

(T, 0, 2bT + x~), 

(T, 0, 2bT) (C.25) 
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on straight lines in the order indicated. 
Inserting (C.24) in (C.18) and denoting the mesonic Wegner-Wilson loop as 

defined in (3.83) by W_ M, we get finally for the T-matrix element of baryon- 
meson scattering: 

T/i = -2is f d2bT exp(iqT • bT) 

d2x~, 62 (x I + x~ + XT)WS, 1 (XT, wg2 (YT) 

This formula is the starting point for the evaluation of the baryon-meson elastic 
scattering amplitude: One can now apply the Minkowskian version of the SVM 
to calculate the functional integral ( )G in an appropriate way. Then one has to 
fold the result with the profile functions of the mesonic and baryonic transitions. 
At the present state one has to make a suitable ansatz for these profile functions. 

For the case of right-moving antibaryons in an elastic reaction we just have to 
substitute the loop factor ),Y+ B by ~V~_ which is obtained by replacing the quark 
connectors V_ by the antiquark connectors V_* and vice versa in (C.23), (C.24). 
In an equivalent way we can get W+ B from }4;~_ by reversing the directional 
arrows on all Wegner-Wilson loops obtained in the way discussed above from 
(C.24). For left-moving baryons and antibaryons we have to exchange + and - 
components. 

For the further treatment of scattering amplitudes involving mesons, baryons 
and antibaryons, for many results and a comparison with experiments we refer 
to [59], [45], [62]. 
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QCD is a gauge theory based on symmetry with respect to colour, described 
by the SU(3) group of colour transformations. 

The aim of this lecture is to introduce, step by step, basic elements of QCD 
by following, as an Ariadne thread, the basics of the SU(N) group. Each new 
element of the colour algebra will be illustrated by a lowest-order perturba- 
tive QCD example. Along these lines we will make the acquaintance with QCD 
bremsstrahlung, which is responsible for particle multiplication in hard processes. 
Physics of QED and QCD bremsstrahlung are quite similar but for one impor- 
tant difference: The gluon, contrary to the photon, carries "colour charge" by 
itself and therefore is bound to play a double rSle: that of "radiation" and, at the 
same time, that of "radiator" with respect to the next-generation (softer) gluons. 
Special emphasis shall be given to coherent effects in parton cascades. They are 
essential in understanding parton multiplication in jets and can be tested against 
experiment through detailed investigation of quark/gluon-initiated hadron jets. 

The author hopes that the reader who takes on the burden of slowly read- 
ing this lecture, and solving the suggested exercises, will master the graphic 
colour-algebra technique, which provides a simple means for calculating QCD 
colour factors without performing laborious calculations. For more information 
on SU(N) groups and colour algebra, see textbooks about gauge theories and 
[1]. Additional and more detailed information on bremsstrahlung and coherence 
effects can be found in the textbooks [2] and [3] as well as in their bibliographies. 
They are used as reference throughout this text. 

1 Basics  of  Colour Algebra  

Quarks in QCD may exist in three different states of colour charge (red, green, 
blue); we therefore define a quark-state vector as 

¢=-- 

* Lectures at the workshop "Nonperturbative QCD" organised by the Graduierten- 
kolleg Erlangen-Regensburg, held on October 10th-12th, 1995 in Kloster Banz, 
Germany 
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where Cr, Cg and Cb are Dirac spinors. The gauge theory of QCD is based on the 
invariance of the QCD-Lagrangian under local rotat ions of ¢ in colour space: 

¢ ' ( x )  = U(x)  ¢(x)  and ¢ ' ( x )  = ¢ (x)  Ut (x)  ; 

the rota t ion mat r ix  U belongs to the SU(3) colour group. 
S U ( N )  is the group of special uni tary  N × N matr ices  U: 

UU t = u t u  : 1,  ( la)  

D e t U = e  ~ l n U = l  . ( lb)  

The N 2 mat r ix  elements of U have in general complex values, which gives 2 N  2 
real numbers.  Uni tar i ty  ( la)  provides N 2 and ( lb)  one condition; what  remains  
are N 2 - 1 independent,  real parameters  to characterize U. 

1.1 P a r a m e t r i z a t i o n .  I n f i n i t e s i m a l  R o t a t i o n s .  G e n e r a t o r s  

The elements U of the group S U ( N )  may then be paramet r ized  by (we always 
sum over repeated indices): 

U(w) = e i~°~° (a = 1 , . . . , N  2 - 1) , (2) 

where w a are real parameters  and t a are N x N matrices.  From ( la)  and ( lb)  it 
follows tha t  t a are Hermit ian  and traceless: 

t~ = ( t t )a , T r ( t  a) = 0 . (3) 

Thus we have parametr ized  a uni tary  S U ( N )  t ransformat ion  with N 2 - 1  (eight 
for SUC(3)) "colour rotat ion angles" w a. Consider an infinitesimal colour ro ta t ion  
with the angles 5w ~, 15w~l << 1. U is then close to the unit  matr ix ,  and in the 
linear approximat ion  reads 

U = 1l + i~w a t a + . . .  (4) 

Under such t ransformat ion the quark wave function acquires a small increment  

¢ - + ¢ ' = U ¢ ' ~ ¢ + ~ ¢ ,  5 ¢ = i ~ w  a t  a ¢ .  

Correspondingly, for an antiquark we have 

where the brackets are there to remind you the mat r ix  mult ipl icat ion rule: row 
x column. 

In general, an opera tor  T ~ tha t  determines an infinitesimal t ransformat ion  
of an object  R is called generator (acting in a given representat ion R). Thus,  
we have found the generators acting in the fundamental  3 and the conjugated 
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fundamental  3 representations corresponding to the quark and ant iquark states: 

R i = ¢ i ,  T~(3) = ta;  (T~(3) : R) i = (t~)~ R k ; (5a) 

R ,  = (hi, T ~ ( 3 )  = - t a ;  (Ta(3) : R) i = - - R k  (t~)~ • (5b) 

The notion of generators plays an important  r61e in the theory: It is T ~ tha t  
determines the ampli tude of radiation of a gluon with colour a off a given object  
R, tha t  is the "colour charge" of the lat ter  (generalization of the e.m. charge). 
Given this convention, one may say that  q and ~ colour charges (5a) and (5b) 
are opposite,  as well as their e .m.  charges. 

1.2 Colour Neutrality (Meson) 

Combining a u-quark of a given colour with its antiquark, e.g. 

u l ' ? ~ I  -~ u r e d ' ~ r e d ,  (6) 

we obviously get a system with a zero e.m. charge. However "colour charges" 
there are not one but  eight, by the number of colour generators (a = 1, 2 , . . .  N 2 -  
1 = 8). Some of them do vanish on the state (6). Meanwhile, a t ru ly  colour- 
neutral  system, such tha t  T ~ : R = 0 for all a, is a coherent mixture  of all 
colours: 

N 
R0 ~ R"white" = UlU 1 "Jr U2U 2 -~- ~3 u3 = ~ ~iU i = (UU). (7) 

i=1 

Indeed, adding together increments due to colour rotat ion of u and ~ components  
(5), we obtain 

~Ro : i~waf i ( t~u)  + i~w ~ ( ~ ( - t ~ ) )  u : O. 

This shows that  the colour mixture (convolution) (7) is invariant or, in other  
words, constitutes a trivial irreducible representation - -  the singlet 1, for which 
Ta(1) - 0. 

The colour convolution (7) determines the s tructure of ~r °, p0 , . . ,  mesons in 
the constituent quark model; it enters in the kinetic, mass and photon radiat ion 
terms of the u-quark Lagrangian, etc. 

Quarks of different flavours transform identically under colour SUe(3) rota- 
tions, therefore the "multiflavour" colour convolutions are "white" as well. For 
example: 

R : d~u i : (du)  , R : ~id i : (~d) 

determine r +, K ° , . . .  wave functions, enter in the weak currents (charged and 
neutral,  respectively), etc. 
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We have verified tha t  the meson-type construction ~q is colourless. We could 
have done it easily without  invoking infinitesimal t ransformat ions  (5), since for 
an arb i t ra ry  U it follows directly from the uni tar i ty  condition tha t  

U :  ((lq) -- (~IU?)(Uq) -- (qq); U*U = 11. 

A little harder  is to prove the colourlessness of a "baryon"  qqq - -  one more  (and 
only one, not counting ~¢~) independent colour-singlet fermion construction.  
Here we shall use the infinitesimal t ransformat ions  in full scale. To this end we 
should address the following questions. 

1.3 T w o - Q u a r k  C o m p o u n d .  H o w  C o m e  3 ~ 3 ---- 6 (~ 37 

Let us choose for the sake of definiteness the product  of two quark wave functions 
uid j. This object has N • N -- 9 components  which t ransform according to (5) 
a s  

5 {u id  j } = (Su~)d j + ui(Sd j )  = iSw ~ { ( ta )~u~d  j + ui(t~)Jkdk } • 

From these nine numbers  we can construct  two tensors: one symmet r i c  and one 
ant isymmetr ic  with respect to colour indices: 

uld j = R (q} + R [~jl , (8) 

with 

R{iJ} = ½(uid j + uJd i ) ,  

R[iJ] = ½(uid j - uJd~) . 

(9a) 

(9b) 

R (ij} possesses ½ N ( N  + 1) = 6 components  ( independent parameters ) ,  while 

R [ij] has ½ N ( N  - 1) = 3. The symmet ry  of each of the two tensors (9) is 

preserved under colour rotations,  tha t  is the components  of R {ij} do not mix  
with those of R [ij]. 

E x e r c i s e  1. Verify tha t  

5R{iJ} = 5R(J ~} ; J R  [~j] = -5R[J  ~] . 

This means,  by definition, tha t  R (ij)  and R [ij} const i tute  irreducible representa- 
tions of the group. Thus,  we have constructed a new colour object  - -  the sextet  
6 - -  colour-symmetr ized product  of two quarks. I ts  generator  is 

T : (6)  = t ~ . 11 + 11. t : ,  (10a) 

where the first (second) mat r ix  in the dot-product  acts upon the first (second) 
index of the s tate  R i/ (9a). Wri t ten in full, 
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The dimension of the second - -  an t i symmet r i c - -  combination (9b) coincides, 
for the S U e ( 3 )  group of interest, with tha t  of the fundamental  representation, 
½ N ( N  - 1) = N = 3. Let us check that  its transformation properties correspond 
to the conjugated  fundamental representation 3. To this end we observe tha t  the 
antisymmetric tensor is equivalent to the 3-component "vector" 

R m  = e m i j u i d  j = e m i j R  [ij] , (m = 1, 2,3) ( l l a )  

with emij the standard fully antisymmetric symbol, whose non-zero components 

6123 ~--- 6231 : 6312 : --6213 ~ --e132 : --C321 -~- 1. 
are 

Thus, 

R 1 ~ ~t2d 3 - u 3 d  2 , 

R2 = u3 d 1 -  ul d 3 ,  

R3 = u l  d 2 - u2 d 1.  

The relation inverse to (11) looks as follows: 

2 R [~jl = u~d j - uJd  i = e ~'ij R ,~ .  

It is straightforward to verify (12) using the tensor identity 

( l lb )  

(12) 

(13) 

(recall, sum over a -- 1, 2, 3 is implied). Now we take the state R m  and perform 
a small colour rotation: 

a r m  = 5 ( e m i j u i d  j )  = iawaemq  ( ( t a u ) i d  j + u i ( t ad )J )  . 

Let us first rename the summation indices in the second term and then use 
ant isymmetry of the e-symbol to write 

emijU i( t~d) j = emj iu  j ( t~d) i = - e m i j U  j ( tad) i . 

Now we can factor out the matrix ta: 

5 R m  = "  a ,~ i ,Sw e~,~(t )k [ ~kdj -- ujd~ ]" 

Continue equality invoking (12) for the expression in the square brackets: 

5 R m  = iJw~(t~)~ emij  eakJRa  ; 

then use (13): 
5 R m  = i5w~(t~)~ (5m5 , ~ k _ 5mS~k a)  R ~  . (14) 

The first term in (14) vanishes due to ( ta)~5 k - Tr  (t a) = 0, and we finally arrive 
at 

5 R m  = - i S w ~ (  ta)~nR~ = - i S w a (  R t a ) m  , (15) 

which is identical to the transformation of the wave function of an ant iquark ,  
Ta(3), cf. (5b). 

We have decomposed the wave function of a compound 2-quark object into 
irreducible representations: 

3 @ 3  = 6 ~ 3 .  
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1.4 Colour Neutrality (Baryon) 

The question about colourlessness of a "baryon" is now readily understood. 
Adding one more quark (s, for simplicity), we get 

5(emi ju id  j s m) = (SRm)s  m + Rm(~S m) = i~w ~ { - ( R t ~ ) s  + R ( t a s ) )  = O, 

which in fact is a repetition of the proof that the "meson" qs is white, where the 
rSle of ~ is played by the ud  pair in the $ state. Let us recall that it is the colour- 
antisymmetry between three quarks that has come to rescue the naturality of 
the baryon state description by the orthodox constituent quark model. 

The lightest baryons fall into two positive-parity multiplets: the ]tavour octet 
p + n + A + 3Z(1193) + 2~(1318) and the f lavour decuplet 4A + 3~(1385) + 
2S(1530) + ~. The former, as you know, have spin 1 3. ~, the latter spin Together 
they combine into the so-called 56-plet of the approximate SU(6) spin-flavour 
symmetry group, where 56 accounts for the total number of spin × flavour states: 
2 , 8 + 4 . 1 0 .  

Interchanging two quarks, one interchanges their flavours, spins, coordinates 
and colours. Consider the A++ baryon state with spin projection +~. It contains 
three constituent u-quarks, and its wave function is obviously ] tavour-symmetr ic  
(identical flavours). Its coordinate wave function is symmetric as well, since it 
is natural to expect that in the ground state the orbital movement is minimal, 
so that each quark pair sits in the S-state. In the absence of orbital momenta, 
quark spins must add up coherently, which corresponds to the spin wave function 
being symmetric as well. As a result, Fermi statistics would be violated if not 
for colour degrees of freedom: 

A ++ = lu~ u~ u t )  ~ z~ ++ =- -~c~jk tu~u~Ju~k) .  

To finalize the discussion of colourlessness, it is worth while to remark a 
difference between "white" mesons and "white" baryons. Namely, a "meson" 
(qq) is a singlet for any S U ( N )  group, while the baryon structure essentially 
depends on N: The number of quarks in a "baryon" always equals N. This is 
easy to realize simply by counting the number of states. With the quark colour 
index i running from 1 up to N to organize a compound object with exactly N 
degrees of freedom, we will have to antisymmetrize N -  1 quark states, 

R m  : ~ i l i 2 . . . i N - - 1  qilqi2 . . .  qiN-~ . 

A well-known example is the isotopic-spin group SU(2). Here the e-symbol bears 
only two indices, and the "baryon" consists of two "quarks". In a more familiar 
language, one constructs the isotope-singlet ("white") states I = 0 from the 
isospin-½ nucleon, p and n ("quarks"), in two ways: 

("meson") N i N  i = tip + fin 

("baryon") e i j N ~ N  j = pn  - np  
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If nature  would have chosen to have four colours, the product  of two quark states 
would give 

q~qJ = 4 @ 4  = R (~j} + R  [~j] = 1 0 + 6 .  

Only after adding one more quark would one find the 71 term, 

qiqjqk = 4 @ 4 @ 4  = . . .  + / 1 ,  

suitable for building a white 4-quark baryon, 

SU(4)-"baryon" = ~ijkt q~ qj qk qt . 

1.5 C o m m u t a t o r .  S t r u c t u r e  C o n s t a n t s  

Studying infinitesimal transformations gives a complete information about  the 
structure of the group. The most impor tant  characteristics of the group is the 
commuta tor  of two transformations U(6wl)  and U(6w2). Comparing two small 
rotat ions (4) performed in different order, we get a mismatch 

[V2Vl ] = U 2 U 1 -  VlV2 = (i6w~)(iSw~)[t°t b] + V(~w3)  . 

Two matrices t ° and t b and, therefore, two group transformations,  generally 
speaking, do not  commute. If this is the case, the group is called non-Abelian. 
(Familiar examples of Abelian groups - -  translations, phase transformations 
U(1); n o n - A b e l i a n -  3-dimensional rotations 0(3) . )  

The matr ix  [tat b] is obviously traceless (Tr(tat  b) -- Tr(tbta)).  Therefore it 
may be represented as a linear combination of the same U-matrices: 

[tat b] = if°bet c ; a, b, c ----- 1, 2 , . . . ,  N 2 - 1. (16) 

The expansion coefficients fobc are real (since [t°t b] is anti-Hermitian,  and we 
have explicitly extracted the imaginary unit  in the r.h.s, of (16)). So defined, 
fob~ are called the structure constants of the group. 

By their very nature,  gluons are int imately related with infinitesimal SU~(3) 
rotations. To construct the QCD Lagrangian one invokes the heuristic principle 
of invariance under local colour transformations.  This means tha t  one is looking 
for the theory invariant with respect to colour rotat ions with parameters  wa(x) 
depending on the space-time coordinate x u. 

Changing the rotat ion angles from point to point introduces a mismatch 
between the colour rotat ion phases in the nearby points, 

~ w~(x) t ° = (V~w°(x)) t ~ 

This mismatch breaks colour invariance of the Dirac equation for free quarks. 
To compensate for this effect, one introduces the gluon fields Aa~(x) interacting 
with quarks. It is therefore not surprising tha t  the matr ix  t ° tha t  generates 
infinitesimal colour rotat ion describes, at the same time, the coupling between 
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quarks and gluons: The emission amplitude of a gluon with colour a off a quark, 
qi __+ qj + ga, has the colour factor (ta)~. 

The same r61e for the gluon emission off a gluon (for the gluon self-interaction, 
in other words), is played by the structure constants: The amplitude ga ._+ gb+gc 
has the colour factor ifabc. We need to make a closer acquaintance with the key 
objects t ~ and fabc. 

1.6 S t a n d a r d i z a t i o n  o f  t -Matrices  

We choose the normalization of the generators t as follows: 

Tr (tat b) - TR jab = 1 j a b .  (17) 

This condition fixes an orthogonal basis in the space of traceless N x N matrices. 
1 The normalization coefficient T~ : [ is a mat ter  of convenience. It is related 

with the choice of the "colour spin" unit. 
As far as QCD in concerned, it is this normalization tha t  corresponds to the 

quark-gluon interaction amplitude shown in Fig. 1. 

u 

i 

= ( e Q q ) ' ) ' ~  

Fig. 1. Quark-gluon vertex (left) and quark-photon vertex (right). k and i are quark 
colour indices; a the gluon colour. Gluon radiation affects the colour of the quark 
(coupling (ta)~ ); the colourless photon leaves it unchanged (coupling 5~ ). Qq is the 
fractional quark charge in electron units. 

E x a m p l e :  F(q-~ --+ "7~/)/l"(q-q ~ gg) .  This knowledge is sufficient to consider 
an example of how to use relation (17). 

Consider heavy onia, the mesons built of heavy quarks c5 or bb. Such states 
may have different spin J and different C- and P-parity, depending on the quark 
orbital momentum L and the total  quark spin S. 

The state is often represented in atomic spectroscopy standards as (2s+I)Lj.  
For example, the famous J / ¢  (and T) is the aS1 state, that  is the S = 1, L = 0 
(S-wave, sorry for confusing S's) meson. 

In general, a fermion-antifermion pair can have the quantum numbers 

P = ( - 1 )  L+ l ,  C = ( - - 1 ) L + S ;  J = I L - S [ , . . . [ L + S [  . (18) 
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This tells us tha t  ¢/7" is a vector C-odd state: j P C  = 1 - - .  Being C-odd, these 
mesons can be (and are) produced via one-photon e+e - annihilation, 

e+e - _~ ~/* -+ J / C ,  ¢ ' , . . .  ; 7`, Y ' , . . .  

Combining quark spins into S = 0, instead of S = 1 as for ¢ / T ,  one gets pseu- 
doscalar C-even (0 -+ )  mesons 1So such as ~?c(2.98). Another  possibility to con- 
struct C-even mesons is to take a P-wave (L = 1) q~ pair with the quark spin 
S = 1. This gives three options for the spin (total momentum J)  of x-mesons: a 
scalar Xo(apo), an axial-vector Xl(3p1), and a spin-2 tensor X2(aP2). 

C-even states cannot be produced via one (C-odd) photon, but  they can 
decay into two photons, or into light (charmless, bottomless) hadrons via two 
gluons as shown in Fig. 2. (To be accurate, we should exclude the X1 mesons 
from this list: The  Landan-Yang veto does not allow an axial s tate  to decay into 
two on-mass-shell gauge bosons, be they photons or gluons.) 

g 

g 

Fig. 2. Decay o[ C-even quarkonia QQ into two gluons or into two photons. 

Let us compare hadronic and 2-photon decay widths of C-even heavy onia. 
The matr ix  elements for the processes in Fig. 2 have identical Lorentz structures; 
they differ only in the strength of the coupling constants and in the colour struc- 
ture. A diagrammatic representation of the squared matr ix  elements is shown 
in Fig. 3. The radiation of the two gluons or photons must not affect the net 

gst a gst a 

gst b gst b 

(eQq) ll (eQq) 1] 

(eqq) 1 (eQq) 

Fig. 3. Squared matrix dements  for the processes QQ -+ 2g, 2~/ . 

colour charge of the ~c pair on either side of the diagrams in Fig. 3. To account 
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for all possible combinations, we have to sum over the diagonal elements of t " t  b 
or 11. After squaring we obtain: 

N 2 1 
{ g 2 T r ( t a t b ) }  2 {g21 ~b 2 4 - -  

= ~5  } = g s  4 ; 

{e2O2qTr(ll)} 2 = {e2O2qN} 2 = e4Oq4 N 2 

Thus, for the charm mesons (Qc = 2/3) we have the prediction 

Fg---tg (yc(2980))  = F ~  (X~(3415)) = F ~  (X~(3555)) 

-- (4N  1/_ g 

(19) 

(20) 

(21) 

In the beauty sector, the ratios similar to (21) should be 16 times larger (Qb = 
-1 /3 ) ,  but neither 75 has been observed, nor 2-photon widths of )/50(9860), 
X b (9915) have been measured. 

1.7 E x p a n s i o n  i n  t a 

Having fixed the normalization of the generators, we can represent an arbi trary 
N × N matrix M as a linear combination of the unit matr ix  and N 2 - 1 matrices 
t a : 

M = n o li + n a t a (22a) 

To find the coefficients n o and n" we apply the trace operator to either side 
of the equation, once immediately, once after multiplying the equation by the 
matrix tb :  

T r ( M )  = n ° N  + O, 

and end up with 

Tr(Mtb)  = 0 -b r~ a l ~ab 

M = 1 T r ( M )  II + 2 T r ( M t " )  ta . (22b) 

E x a m p l e :  S t r u c t u r e  C o n s t a n t s  Let us take M = [f.atb] to obtain from (22) 
the expression for the structure' constants: 

ifabc ---- 2Wr (tc[tatb]). (23) 

The fabc symbol is antisymmetric with respect to a -+ b, as follows from its 
definition (16). 

Exe rc i se  2. Using cyclic permutation under the trace in (23), verify tha t  fabc 
is actually antisymmetric with respect to any pair of indices. 
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E x a m p l e :  3 ~ 3 --  1 ~ 8. Consider a composite object  q l ~  as an N × N 
matr ix  given by the product  of the quark (¢) and antiquark (2) wave functions: 

1 i 
¢ ~ k  ---- ~Sk (X¢)  + n ~ ,  (24a) 

where R~ is the traceless tensor 

• 1 i 
R~ = ¢ ~ k  - ~ $ k ( X ¢ ) ,  R~ = 0 .  (24b) 

Under the group transformation 

~R~ = i~w a (ta)~Rlk + iSw ~ R~(--ta)ek = i~w~([taR])~ , (25) 

the tracelessness stays intact: 

~R~ c< Tr([taR]) = 0 = R].  

Therefore, the N 2 - 1 parameters  of R~ form a new (irreducible) representat ion 
- -  the SU(3) octet.  

According to (22), the traceless matr ix  R can be paxametrized by a "vector" 
Ca, a = 1 , 2 , . . . , N  2 - 1, as 

R~ -- Cb(tb)k,i Cb : 2Tr(Rtb) • (26) 

1.8 A d j o i n t  R e p r e s e n t a t i o n .  G e n e r a t o r s  T a ( 8 )  

From the t ransformation law (25) we conclude tha t  the generators of the matr ix  
representation R of the octet  are given by  the commutat ion operat ion with t~: 

T a ( 8 ) :  R = [t~R], Ta(8)  = [ t ~ . . . ] .  (27) 

Substi tut ing the representation (26), we define the generator in the "vector" 
representation by the relation 

T~(8) : n = T~(8) : (Cot ¢) - t b ( T a :  ~ ) ) b  ' 

to obtain 
tb ( Ta  : ¢)b = [t~tc]¢~ = ifacbtb ~)c = --ifabct b ¢c 

(28) 
( T  a: ¢)b = -- i fabc¢c.  

The representation whose generators coincide with the s tructure constants of the 
group is called the adjoint representation. The t ransformation law in the vector 
form, 

5¢ = iSw ~ T ~ : ¢ ,  (29a) 

becomes 

~¢b = ~w ~ A b ~ ¢ c  • ( 2 9 b )  
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Since both the rotation angles 6w a and the elements fabc are real numbers, the 
field ¢ can be chosen real as well. Example: an octet of real gluon potentials A~ 
which transform according to (29) under the global (independent of the space- 
time point) colour rotations. 

Treating fabc as generator, (iTa(8))bc : fabc, one should try to forget that 
the indices of the structure constant are "all equal" and look upon a as the label 
(number) of the generator and b, c as numerating rows and columns of the 8 × 8 
matrix: 

6¢b o( (iT~)bc ¢c,  

with c the index of the operand, b that of the result. 

2 QCD and Conservation of Colour 

2.1 Local Colour Invar iance  and  G l u o n  Field Strength 

Let us recall how the QCD Lagrangian emerges from the heuristic idea of the 
invariance of the theory under the local colour transformations. 

One starts by considering the trivial Dirac fermionic Lagrange function de- 
scribing free quarks. Its colour S U ( N )  invariance gets lost due to the kinetic 
term with spatial derivative when the colour rotation parameters are taken to 
be x-dependent: 

To rescue invariance of the quark Lagrangian under local colour rotations one 
invokes the good old QED experience where the photon was known to act as a 
"compensating field" for the x-dependent Abelian phase shifts of the complex 
fermion (and/or scalar) fields. To this end we replace the usual derivative by the 
"covariallt" one, 

D u = O~ - igAu,  (30a) 

and design a proper inhomogeneous transformation for the compensating gluon 
field 

i -1 (30b) Au ~ UA~U - 1 -  g (OuU)U • 

Here A is the matrix constructed of eight gluon-field potentials 

A u = t~A~.  

Within this convention, ¢ D~¢ stays invariant since 

D~¢ --+ U O u ¢ + ( O ~ U ) ¢ - i g { U A u U - i - ~ ( O u U ) U - i } u ¢  

= U (0~¢ - igAu¢ ) = U(Du¢ ). 
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In other words the differential operator D r (unlike the potential Ag, sic!) trans- 
forms as a proper adjoint-representation object: It "rotates" homogeneously un- 
der the local transformations according to 

¢ D . ¢  --~ ( ¢ U  -1) (UDuU -1) (U~b), 

D r ~ U D . U  -1 . 

Obviously, so does the product of such objects and, therefore, the commutator 
of two covariant derivatives: 

. . . .  i [D~,, D,.] O.A~ - O~A~ ig [A. A~] t~ F~a, (31a) 
g 

b c F ~  -- O.Aa~- O~Aa~ + g fabeA.A~.  (31b) 

This is nothing but the gluon field tensor that gives the gluonic piece of the 
QCD Lagrangian, (F~.) 2. 

Restricting ourselves to infinitesimal colour rotations, U ~ 11 + iJwa(x) t ~, 
from (30b) we get 

lta At, -+ A~ + i~wa(x) [t a A~] + O ~ w a ( x ) ,  
g 

or in the "vector" form 

A b -+ A b + gw~(x)f~beAC~ + OD(~wb(x) . 

For the case of x-independent phases, O~6wa(x) =- O, this leads us back to (27) 
and (29), showing that the gluon fields thus introduced indeed transform under 
the adjoint representation of the global SUe(N) .  

2.2 Jacobi Identity 

Duality between the matrix and vector forms of the octet representation is prac- 
tically very useful. As an example of its use we shall prove an important relation 
between the structure constants known as the Jacobi identity: 

/abe fede -'1"- fbce fade "t" fcae fbde = O, (32) 

with a, b, c, d arbitrary external indices (and e the summation index). A mne- 
monic rule for memorizing (32) is to think of the cyclic permutation of the triplet 
(a, b, c}. This relation looks quite cumbersome, but it becomes very transparent 
in the pictorial form (see below). 

The Jacobi identity naturally appears in the problem of colour transformation 
properties of the gluon-field strength tensor (31b). Indeed, F~. contains the 
bilinear term which should behave, under the global rotations, exactly as the 
gluon potential itself (the linear term), that is according to the adjoint (octet) 
representation: 

iTd(8) : F a = fdaeF e.  
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For the bilinear te rm under interest the r.h.s, becomes 

f dae b c febc AuA~ . (33a) 

On the other hand, we can find the 1.h.s. by explicitly acting on each of the two 
potentials: 

b c {(iT a A~,) b A~ + Ab(iT~ : Av) c} iTd(8) : {fabeAuAv } = f a b c  : 

b e = fabc (fdbeAuA c "F fdceAuAv) = (face fdeb + fabe fdec) A~,A~b c , 

(33b) 

where in the lat ter  equality we have interchanged the summation indices b ++ e 
in the first term and c ~-~ e in the second one. From (33) we get 

fdaefebc = faecfdeb+ fabefdec, 

which coincides with (32) after recalling the ant isymmetry  fdae = --fade and the 
cyclic permutat ion f ~  = fca~, fd~b = fbd~ and fdee = f~d~. 

Thus we have checked that  the Jacobi relation takes care of the proper  colour 
transformation of the field strength. To prove (32), let us shift to the matr ix  
language. We consider the matr ix  

• b c t a  = i-P (2) =---- lf~beA~,A~ [At, A~] g- Uv 

and apply the generator T a to the commutator  of two potentials, 

T ° :  {[A~, A.]} = [(Ta:  Au),  A~] + [Au, ( T ° :  A~)] 

= [[t a, Ag], A~] + [Au, [t ~, A.]]  = [t  ~ , [A,,  A~]], 

which shows that  F (~) indeed transforms as an octet,  as it should. The  second 
line results from the cyclic identity for commutators  

[t o, [t ~, tc]] + [t b, It °, t°]] + [t °, It °, tb]] : 0 .  (34) 

As familiar analogue from vector algebra, there is a similar relation for the vector 
products: 

[A × [B x C]] + [B × [C × A]] + [C × [A × B]] = 0 .  

E x e r c i s e  3. Verify tha t  expressing the commutators  in (34) via s t ructure  con- 
stants directly leads to the Jacobi identity (32). 
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2.3 Universal i ty  o f  C o m m u t a t i o n  Relat ions  

Let us convolute relation (34) with an octet field ~bc, ¢ -- Cot c and rewrite the 
result as 

[t a , [t b, ¢]] - [t b , [t a, ¢]] = [[t °, tb], ¢] = ifabc[t c , ¢]. (35) 

The commutator with t ~ is the octet generator Ta(8) (in the matrix language). 
Therefore (35) can be represented in the operator form as 

[Ta(8), Tb(8)] = ifabcTC(8).  (36a) 

We have defined the structure constants by the relation 

It , t b] = i / o b o t  c . 

Since t ° is the generator in the fundamental representation, this tells us 

[Ta(3), Tb(3)] : i fobcTC(3).  (365) 

We conclude that the generators of the adjoint representation commute with 
each other exactly as the generators in the fundamental one. This property is of 
the most general nature and holds for all irreducible representations R: 

[Ta(R), Tb(R)] = i fabcTC(R) .  (37) 

Exercise 4. Verify (37) for T"(3) and Ta(6). (Working with Ta(3) -- - t  a, 
remember that the $ generators act on the antiquark state from the right). 

2.4 Conserva t ion  of  Colour  C u r r e n t  

In physical terms, universality of the generator algebra is intimately related with 
conservation of colour. To illustrate this point let us consider production of a 
quark-gluon pair in some hard process and address the question of how this 
system radiates. Let p and k be the momenta of the quark and the gluon and b 
the octet colour index of the latter. For the sake of simplicity we concentrate on 
soft accompanying radiation, which determines the bulk of particle multiplicity 
inside jets, the structure of the hadronic plateau, etc. As far as emission of 
gluons with momenta ~ ~ k, p is concerned, the so-called "soft insertion rules" 
apply, which tell us that the Feynman diagrams dominate where ~ is radiated 
off external ("real") partous. The corresponding diagrams for our process are 
shown in Fig. 4. 

Please notice that the colour factor in the 3-gluon vertex corresponds to the 
action of the generator T°(8) (emission of a gluon in the colour state a) on the 
octet Ab: 

(Ta(8) : A)b = --ifobc = ifboc. 

DO two emission amplitudes interfere with each other? It depends on the 
direction of the radiated gluon ~. 
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~ a )  pt ,  . t a tb 

p 

k ~ c< ~ . iAact c 

Fig. 4. Feynman diagrams for radiation of the soft gluon with momentum ~ and colour 
a off the qg system. 

In the first place, there are two bremsstrahlung cones centred around the 
directions of p and k: 

quark cone: ee  ~ eep << O ~, e£k , 

gluon cone: Oe -~ ~ek << e ~, e e p ,  

with O --= epk  the aperture of the qg fork. In these regions one of the two ampli- 
tudes of Fig. 4 is much larger than the other, and the interference is negligible; 
the gluon ~ is radiated independently and participates in the formation of the 
quark and gluon sub-jets. If O is sufficiently large and k sufficiently energetic 
(relatively hard, k ,~ p), these two sub-jets can be distinguished in the final state. 
Generally speaking their properties should be remarkably different. In particular, 
the particle density in q and g jets (at least asymptotically) should be propor- 
tional to the probability of soft gluon radiation which, in turn, is proportional 
to the "squared colour charge" of a quark/gluon. As we shall shortly see, this 
results in the ratio 

(~ d_~ ) g ( d n \  q N 2 - 1  4 9  
: £--d-~) = Y : - - - ~ - - - 3 : g = ~ .  

Ot<e oL<e 

Multijet configurations are comparatively rare: Emission of an additional 
hard gluon k ,-, p at large angles e ,,- 1 constitutes a fraction a,/~r ~ 10% of 
all events. Typically, k would prefer to belong to the quark bremsstrahlung cone 
itself, i.e. to have e << 1. In such circumstances the question arises about the 
structure of the accompanying radiation at comparatively large angles 

Oe = Oep ~--- Oek >> e .  (38) 

If the quark and the gluon were acting as independent emitters, we would expect 
the particle density to increase correspondingly and to overshoot the standard 
quark jet by a factor 

( d n ) ' + q  /" dn"  q N 2 - 1  13 
: [ ~ )  = N : ~ + I  (39) 

e-~  e,>e eL>e 2N : -4-" 

However, in this angular region our amplitudes start to interfere significantly, 
so that radiation off the qg pair is no longer given by the sum of probabilities 
q --+ g plus g -+ g. We have to square the sum of amplitudes instead. 
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This can easily be done by observing that  in the large-angle kinematics (38) 
the angle O between p and k can be neglected, so that the accompanying soft 
radiation factors become indistinguishable, 

k p 1 1 

2 ( p l )  2 (1-cos0 ) - - e l  

Thus the Lorentz structure of the amplitudes becomes the same and it suffices 
to sum the colour factors: 

t a t b + ifbact c = t a tb + [$b, ta ] = tb t a .  (40) 

We conclude that the coherent sum of two amplitudes of Fig. 4 results in radia- 
tion at large angles as i f  off the initial quark, as shown in Fig. 5. 

p~ . t b t a b c< ~ - ~  

Fig. 5. Radiat ion at large angles is determined by the  total colour charge. 

This means that the naive probabilistic expectation of enhanced density (39) 
fails and the particle yield is equal to that for the quark-initiated jet instead: 
13/4 -~ 1. It actually does not matter whether the gluon k was present at 
all, or whether there was a whole bunch of partons with small relative angles 
instead. Soft gluon radiation at large angles is sensitive only to the to tal  colour 
charge of the final parton system, which equals the colour charge of the initial 
parton. This physically transparent statement holds not only for the quark as 
in Figs. 4, 5 but for an arbitrary object R (gluon, diquark, . . . ,  you name it) as 
an initial object. In this case the matrices t = T(3) should be replaced by the 
generators T(BL) corresponding to the colour representation R, and (40) holds 
due to the universality of the generator algebra (37). 

Exercise 5. Check the colour conservation for the case of an initial gluon. 
Consider the decay of a virtual gluon b into two "real" gluons c + d. Write 
down the colour factors for radiation of an extra gluon a off c and d. Use the 
Jacobi identity (32) to show that their sum (describing large-angle radiation) is 
equivalent to the radiation off the parent b. 

Exercise 6. Produce a q~ pair. Check tha t  the coherent radiation off q and q 
cancels out when qq are produced by a colour singlet source (photon -+ q~) and 
adds up into radiation off a gluon in the case of 9 -+ q~ splitting process. 
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2.5 Angular Ordering in Patton Cascades 

QCD is a quantum theory, no doubt about it. This very statement seems to 
make the problem of describing a parton system involving n >> no gluons and 
quarks (with the actual value of no ~ 1 depending on your computer) look hope- 
less: Solving such a problem would call for sorting out and calculating O ((n!) 2) 
Feynman diagrams. 

Why should we worry about multiparton systems in the first place? Is it not 
true that the squared matrix element in the n th  order of perturbation theory is 
proportional to (as~r) '~ ~ (0.1) n and, thus, vanishingly small for large n? The 
answer to this (as to many other questions, according to the celebrated Hegel 
dialectic wisdom) is: "Yes and No". Indeed, 

Yes, it is very small, if we talk about a "multijet" configuration of 10 energetic 
quarks and gluons with large angles between them; 

No, it is of order unity, if we address the total probability of having 10 extra 
gluons (and quarks) in addition to the q~ pair originally produced in e+e - 
annihilation at LEP. 

Allowing small relative angles between partons in a process with a large 
hardness Q2 results in a logarithmic enhancement of the emission probability: 

dO 2 
as ==¢ a s - ~  ~ as logQ 2, (41a) 

so that the total probability of one parton (E) turning into two (El E2 ,-~ ½E) 
may become of order 1, in spite of the smallness of the characteristic coupling, 
as (Q2) c( 1/log Q2. A typical example of such a "collinear" enhancement - -  the 
splitting process g --~ q~. 

Moreover, when we consider the gluon offspring, another "soft" enhancement 
enters the game, which is due to the fact that the gluon bremsstrahlung tends 
to populate the region of relatively small energies (E _~ E1 >> E2 - w): 

dw dO 2 Q2 
as ~ as--w O - - ~  --~ as log 2 • (41b) 

Thus the true perturbative "expansion parameter" responsible for patton mul- 
tiplication via q --~ qg and g --+ .gg may actually become much larger that I! 

In such circumstances we cannot trust the perturbative expansion in as << 1 
unless the logarithmically enhanced contributions (41) are taken full care of in 
all orders. 

Fortunately, in spite of the complexity of high order Feynman diagrams, such 
a programme can be carried out. There is a physical reason for that: Large contri- 
butions (41) originate from a specific region of phase space, which can be viewed 
as a sequence of parton decays strongly ordered in fluctuation times. Given such 
a separation in time, successive patton splittings become independent, so that 
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the emerging picture is essentially classical. This is how the parton cascades de- 
scribed by the classical equations of patton balance (evolution equations) come 
about. 

However, in applying this picture some care should be exercised. As long as 
sof t  gluon radiation is concerned, being emitted la ter  does not necessarily mean 
being emitted i ndependen t l y .  As we have seen above, the quantum-mechanical 
coherence cuts off radiation at angles exceeding the angle between the emitters. 
As a result, the classical probabilistic picture of independent patton multipli- 
cation is applicable to angular  ordered patton configurations with successively 
decreasing relative angles (the patton tree as a cypress rather than an oak). 

It is universality of the algebra of generators (37), which is another way of 
pronouncing "conservation of colour", that makes the angular ordering prescrip- 
tion universal with respect to the nature (colour representation) of participating 
emitters. 

3 Colour Charges 

3.1 Cas imi r  O p e r a t o r s  and G l u o n  R a d i a t i o n  In t ens i ty  

Consider the "square" of the generator in some representation R 

T 2 _~ T a T a " 

This operator commutes with each of the generators. Indeed, such a commutator 
is identically zero as a convolution of an antisymmetric tensor with a symmetric 
one: 

[T 2, T b] = T a T ~ T  b _ T b T ~ T  ~ = T a [ T  ~, T b] + [T a, T b ] T  ~ 

= ifabc ( T a T  ~ + T ~ T  a) = O. 

Therefore (Schur's Lemma) T 2 is proportional to the unit operator in a given 
representation. For example, 

(Ta(3))) , j ~ ~ a # = CFS~ O F 1 ,  (42a) (T (3))~ : ( t ) j ( t  )k 

( T a ( 8 ) ) b d ( T a ( g ) ) d c  -~ ( - - i fabd) ( - - i fadc)  -~ fbadfcad = CA~bc - -  C A 1 .  (42b) 

The numbers CF and C A  are  known as "Casimir operators" of the fundamental 
(F) and adjoint (A) representations. On the other hand, these are the colour 
factors that determine intensity of gluon radiation off a quark and a gluon. 
Probability of gluon radiation is given by the squared amplitude summed over 
colours in the final state. Pictorially, it takes the form of (the imaginary part of) 
the loop diagram 

ta t a 

ifadc i f dab 

N 2 -- 1 
= - 2 - 7 -  5 1 '  ( 43a )  

= C A 1  = N S b c .  (43b) 
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From this point of view the statement of Schur's Lemma looks trivial: Emission 
and absorption of the same gluon leaves the colour state of the radiating object 
unchanged. 

To find the squared "QCD charges" we first derive an extremely useful rela- 
tion known as Fierz identity (completeness relation) for the S U ( N )  group. 

3.2 Fierz Identity 

Let us again apply our knowledge of presenting an arbitrary N x N matrix M 
as a linear combination of generators. This time we choose for M an elementary 
matrix with only one non-zero component M~ = 5(j)5(~), where we assume j 
and l fixed. The general formula (22) then gives 

1 i l = + 2 (to)i  (t°)} (44) 

A pictorial representation of (44) is given in Fig. 6. 

i j i J " l k  t (  " 

= -~ k + 2 
k I 

1 k 

Fig. 6. Pictorial representation of the Fierz identity (44). 

Considering i of M~ as the colour index of a quark and k as the colour index of an 
antiquark, the physical interpretation of this picture becomes clear: It is nothing 
but a decomposition of N 2 colour states of a q~ system into the colour singlet 
and colour octet parts, which we have actually done before in the algebraic form, 
see (24) and (26). 

It is convenient to introduce colour projection operators P(o) and P(8), 

ll(3). 1(3) = P(o) + P(s); (45a) 

P(0) - -  ~ _ _  

P(s) = 2 ~ R ~  (45c) 
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E x e r c i s e  7. Check pictorially that P are the true projectors: P(~) = P(0), 

P~s) -- P(s), P(o)P(s) = P(s)P(o) -- 0. Hint: use 

= : N ;  =  (ta) : 0 ( 4 8 )  

The Fierz identity is a powerful tool. An alternative way of looking at Fig. 6 
is to express the colour structure of one-gluon exchange between two quarks (or 
a quark and an antiquark) in terms of plain quark lines. We have 

1 1 

= 2 2N 
(47a) 

1 1 
= 2 2N .~ 

(47b) 

As for the 3-gluon vertex, it can be substituted (colourwise) by gluon-quark 
interactions according to (23), this relation having the following pictorial repre- 
sentation b 

Hereafter we adopt the convention of labelling the 3-gluon f-vertices clockwise, 
as in (48). 

Applying (47) and (48) allows one to get rid of gluon lines altogether and 
thus to trivialise the calculation of colour factors of arbitrarily complex QCD 
diagrams. 

3.3 Qua rk  Colour  Charge  

To find the squared colour charge of a quark, CF, let us set and sum over i --- j 
in the Fierz identity (44). Pictorially this means joining the quark lines in Fig. 6 
between the points i and j as shown below: 

" "  5 d  
~ ~ 1 

= ~  k ÷ 2 
l k l l k 

The last graph here is topologically identical to (43a). So we get 

N3~ = 1 I N 2 - 1  4 
-~Sk + 2CFgZk ~ C F - -  2N - 3" 
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3.4 Q C D  Ver tex  C o r r e c t i o n s  

Let us now apply to Fig. 6 a similar trick of contracting a q~ pair, but  now 
sandwiching a gluon vertex between quarks: 

1 
= ~ + 2  

Making use of (46) and stretching the lines we arrive at 

_ 1 ~ q q q o o ~  
27v (49a) 

N 2 - 1 ~ _  
= ~ 000oo~ (50) 

These corrections are present in QED as well. Substituting electrons and photons 
for quarks and gluons we have exactly the same expressions, the only difference 
being the colour factors, which are obviously absent in the QED case. 

Vertex and wave-function renormalization corrections possess logarithmic ul- 
traviolet divergences. In QED they are known to cancel due to the Ward identity. 
In the QCD context, however, this cancellation is broken by mismatch in the 
colour factors: Renormalization of the quark wave function acquires CF = 4/3, 
while the vertex correction only -1 /2N = -1 /6 .  Symbolically we can write the 
s u m  a s  

N 2 - 1~ 
~Z,,.f.(50)+~Zvert.(49) = ( ~ ~ " A l n A -  (-2-2~) (51) 

The latter term is relatively suppressed by the factor 1 / (N 2 - 1), which vanishes 
in the large-N limit. It looks as if the quark has become sterile in the vertex 

Algebraically, 

t a  tb t a  __ 1 tb  " (49b) 
2N 

The graph in the 1.h.s. of (49a) as a Feynman amplitude describes one-loop 
correction to the quark-gluon interaction vertex. It should be compared with 
the diagram for the one-loop correction to the quark wave function 
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correction graph (49a). After virtually splitting q into a qg pair, we find the 
quark no longer capable of interacting with an external  gluon as if it had lost 
its "colour charge". This is t rue in some sense. It  had. But  the colour did not 
vanish in thin air: It was transferred to the loop 91uon, which is as legitimate 
a colour-bearer as a quark is. So we come to considering an additional vertex 
correction in which the loop gluon is being probed instead of the quark, 

(52a) 

Algebraically, 

C A  tb (52b) t a t c ifabc 2 

which we immediately obtain by representing the product  of generators as 

t ~ t e  = 1-[ta2t , tell + ~tltta, te~J ," ~1 i f a e d t  d + . . .  

dropping the symmetric piece ({t ~, U} fabc -- O) and invoking the definition of 
CA in (42b). 

This specific non-Abelian term in the q~g vertex function diverges logarith- 
mically as well and works in a pool with the other two contributions to rescue 
colour conservation. Since we expect it to cover the mismatch between the al- 
ready known colour factors in (51), this provides us with the means of finding 
the octet  Casimir operator  CA.  

3.5 G l u o n  C o l o u r  C h a r g e  

Construct  the difference of the colour factors in (51) and trace the following 
chain of equalities: 

N t b  ~ _ _ 

( i  d )  l t t t d  ---- ta t  a t b -- t a t b t ~ = t ~ ( i f~bcU) = -~f~cdt i]~bc = ~JaedJaeb -- - - t  b . 

The result is CA = N ,  as was stated in (43b). 
Another important  message comes from the observation tha t  we did not use, 

in the second line of the above equation, anything but  the commutat ion relation 
(37), which is already known to us to be universa l .  Therefore, for an arb i t rary  
object substi tuted for the quark we have 

Ta(R) Tb(R)Ta(R) = (C(R) - N )  Tb(R). (53) 
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TaTbT a is the colour factor for the pseudo-Abelian vertex correction; C(R) that 
for the wave-function renormalization. Both depend on the colour representation 
of the scattered object. However, in their difference, which only enters into the 
expression for QCD coupling renormalization, the dependence on R cancels: 

5Z (R)(49) = C ( R ) . A l n A - ( C ( R ) - N ) - A l n A .  (54a) ~Z(w.~?(50) Jr- vert. 

Taken together with the non-Abelian vertex piece, 

(NA) N 5Z¢evt" (52) = ~-- ( a  - A) In A, (54b) 

and (half of) the wave-function renormalization of the external gluon, 

2V~w.f, - -  (16r2 N -  ~nf - -~ (54c) 

this results in the universal renormalized coupling gs- Remark that the pieces of 
(54) separately have little sense since the numbers A and G are gauge-dependent. 
Meanwhile, the physical coupling is not, and you recognize the famous one-loop 
QCD fLfunction in the coefficient of the ultraviolet log: 

5gs gs ((~Z(wRf) -~ (~Zvert.-L ' ~ ( N A )  1 , ~ ( g l u e ) ~  = . .  - - ~ v e r t .  -~- 2~'~w.f. ~] 

_ 1~2 (1--'~ N -  3nf) lnA. 
(55)  

3.6 Gluon Exchange Potential  

The QED Feynman amplitude of scattering of two charges via photon exchange 

pl  p l  

e l  e2 
c< k2 , k = p l - p l ,  (56a) 

describes at the same time Coulomb interaction energy 

V(r) = el e__~2 , (56b) 
r 

with r = Irl -r21 the distance between the charges. In QCD the gluon Green 
function coincides with that of the photon, at least in the region of large mo- 
mentum transfer (virtuality) k 2. Therefore at sufficiently small distances r <~ 
A -1 .-~ 1 fm we can talk about the Coulomb QCD interaction between quarks. 
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Turning to the QCD interaction picture, we have to replace the e.m. charges 
in (56) by the colour generators and sum over all colour states of the in termedia te  
gluon: 

~ 1  ~ T ~ 2 
_ 2 J ' 1  2 __ g s  ( 5 7 )  

Ro V ( r )  = y s  r - r v n ,  

Now v12 = T~T~ is an operator  acting on the colour indices of the 2-particle 
state. As a result, the interaction energy (eigenvalue of the operator)  will depend 
not only on the nature  of par t ic ipat ing objects (R1,2 = q, q, g, etc.) but  on the 
overall colour s ta te  Ro of the pair  as well. I t  is like the spin-spin interaction,  
whose magni tude  surely depends on sl ,  s2 but  also on the to ta l  spin of the 
system so = ]Sl + s21, Is1 - s21 _< So _< sl + s2. 

For example,  for a quark-ant iquark pair  (R1 = 3, R2 -- 3) we have 

vs i  = T°(3)  T~(~) ; 
a i  a j  ~8r3: ¢~2~ = (t )k ( - t  )~ ¢~2~. 

As we know, q~ can be either in a singlet or an octet  state. In the first case 
¢ k ~ i  c< 3] and we get 

• a i a t  k . ~ :  6~ = ( t ) k ( - t  )~ 6j = - ( t ° t ° ) ~  = - c ~ 6 ~  ; 
N ~ - 1 2 (58a) 

rag(1 ) = --CF -- 
2N 3 

For the octet  state,  Ck 2 .(t b~j Cb, 3~ It 

rag: (tb)~ ~ i a j 1 = ( t ) ~ ( - t  )l (tb)~ = -(t~tbt~)i = ~-~ (tb)i ; 

1 1 (5Sb) 
vsa(8) -- 2N - 6'  

where we have used (49). As expected, the opera tor  v is diagonal in bo th  cases: 
1 - + 1 , 8 - + 8 .  

Considering the interaction between two quarks we have 

rag = Ta(3)  Ta(3)  ; 

= (+~i  t + ~  Ck)~l va~:  ¢iXJ ~ Jk~ ~ Jl • 

For the sextet we subst i tute  the symmetr ic  combinat ion R k~ = ckx~ + ¢~X ~ to 
obtain 

( ~ ~. 2"N1 6, J \ R k ~  ~] 1 ,. vaa :  R i~ = (t )k(t )e 2 -2--~R°; 
(59) 

N - 1  1 
vaa(6) - 2N - 3 
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Here we employed the Fierz identity (44) and the symmetry of the R 0 state. 
For the $ state of the qq pair, a straightforward calculation can similarly be 

performed. We shall use instead a flanking manoeuvre, which will teach us how 
to find interaction energy for arbitrary colour objects. 

3.7 Interaction Be tween  Arbitrary Colour States  

Let R1 and R2 be colour group representations of the participating objects and 
Ro their total colour state, as shown in (57). We may look upon it as a decay of 
Ro into R1 + R2. Since the colour current conserves in the course of "decay", 

T~(R0) = Ta(R1) + Ta(R2).  (59a) 

Squaring this equality we obtain 

(Ta(R0)) 2 = (Ta(R1)) 2 + (Ta(R2)) 2 + 2Ta(R1)Ta(R2), 
(59b) 

vR1R2(Ro) = Ta(R1)T~(R2) = ½ (C(Ro) - C(R1) - C(R2)).  

Thus we have expressed the potential energy in terms of the Casimir operators 
(squared colour charges) of three representations. 

For a pair of quarks in the antisymmetric state 3, we have C(Ro) = C(R1) = 
C(R2) - CF, which gives 

N 2 - 1 2 
- (60) 

4N 3 
= -½CF - 

Putting things together, 

Attraction: 

Repulsion: 

4 2 
q~(singlet) --- - ~ ; qq(triplet) . . . .  

3' (61) 
1 1 

q~(octet) = + ~ ;  qq(sextet) = + ~ .  

In reality one-gluon exchange may be too naive a picture to take responsibility 
for binding quarks into hadrons. In spite of this pessimistic remark, the very fact 
that the colour force between quarks according to (61) tends to attract q~ into 
colourless mesons and qq pairs into baryonic 3 compounds is supposed to give 
you that warm fuzzy feeling in your stomach. 

What about interaction between two gluons or, say, between a quark and a 
gluon? For two gluons in colour singlet and octet states, we immediately derive 
from (59b) 

3 
vss(1) = - N  = -3", vss(8) = - 2  N1 = - - ' 2  (62) 

This is not the end of the story, however, because the gg system has a richer 
"colour content": 

8 @ 8  = 1 ¢ 8 . ¢ 8 s @ 1 0 @ 1 - - 0 @ 2 7 .  (63) 
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As we shall see shortly there are two ways of constructing colour octets out of 
two gluons, namely antisymmetric (a) and symmetric (s) states with respect to 
the colours of the participants. Therefore two octets have appeared in the r.h.s. 
of (63), which have identical SUe(3) transformation properties. 

To get any further, we need to learn about higher representations and their 
respective "charges" C(R). 

4 B e y o n d  3 a n d  8 

4.1 High Irreducible Representations of  SU~(3) 

The standard technique for constructing irreducible representations can be found 
in group theory textbooks. To give you a feeling, let us take qg system as an 
example. The product of quark and gluon wave functions bears three colour 
indices i J ¢ A k. With those we can do the following: 
contract the upper and the lower index, 

¢iA~ = n j ~ 3 (64a) 

(Remember: Contraction of another pair j = k would give zero because of irre- 
ducibility of A(8)), 
antisymmetrize (pull down) two upper indices, 

i j ¢ Ak.ei j~ = Rkl ~ 6 ,  (64b) 

symmetrize the upper indices, 

+ = 1 5 .  (64c)  

The first two objects, we are familiar with; the latter (64c) is a new irreducible 
representation. It has dimension 15 and is described by a tensor with two upper 
and one lower quark indices (symbolically, qq~l). 

In general, an irreducible representation R of the SU(3) group can be de- 
scribed by a traceless tensor which is symmetric, separately, with respect to its 
p upper and q lower indices: 

R{il,i2...ip} a,i2...ip 
"[k, ,k2. . .kq} ; Ra,k2...k q ---- 0. (65a) 

Exercise 8. Prove that the tensor (65a) has 

K(p, q) --- ½(p + 1)(q + 1)(p + q + 2) (65b) 

degrees of freedom (dimension of the representation). 
Given this technology, the multiplication table follows: 

3 ® 3 : 3 ~ 6 ,  3 ® 3 : 1 ® 8  
3 ® 6 = 8 ~ 1 0 ,  3 ® 6 : 3 @ 1 5  
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3 ® 8 = 3 @ 6 ~ B 1 5  

3 ®  10 = 15EB 151 , 3 ®  10 = 6 @ 2 4  

6 ® 6  = 6 ~ B 1 5 ~ 1 5 1  6 ® 6 =  1 ~ 8 E B 2 7  

6 ® 8 = ~] EB 6 @ 1 - 5 ~  2 4  

6 ®  1 0  = 1---5 EB 2 4  ~ 21  , 6 ® 10  = 3 ~ 15  @ 4 2  

8 ® 8 =  1 @ 8 a  EB8s ~ 1 0 ~  1 0 ~ 2 7  

8 @ 10 : 8 ~B 10 EB 27~B 35 

I0 ® 10 = I0 @ 27~B 35 ~B 28, I0 @ 10 : I ~ 8 @ 27@ 64 

Each line can be "conjugated", for example, 

3 ® 3 : 3 e 6 ,  3@6 : 8 ~  1--0, etc. 

Note that representations 8, 27, 64, . . . ,  having p : q, are self-conjugated ("re- 
al"). 

Now we are in a position to calculate C(R) for an arbitrary irreducible rep- 
resentation R(p, q). We construct the corresponding composite generator 

P q 

Ta = E T a ( 3 )  + E Ta(3) 
l = l  m : l  

and square it to obtain the quadratic form 

P 

C(R) = (p+ q)(Ta(3)) 2 + 2 E Tt(3)T$(3) 

t ' > t = l  (66a) 
q P q 

+ 2  E T~(3)Ta ' (3)+2E E TT(3)T~(~)" 
m t  > r n : l  l : l  r n : l  

Here the first term accounts for the squared proper generators, while the rest 
is interference between p "quarks" and q "antiquarks". The latter contributions 
can be pinned down by observing that, due to the internal symmetry of the 
representation (65a), each couple of quarks in it is sitting in a sextet (qq in 6), 
while each q~ pair sits in an octet (tracelessness). Therefore the products of two 
generators in (66a) give us colour potentials in the corresponding pair states: 

C(R) = (p+q)CF + [p(p- 1) +q(q-  1)] van(6) + 2pqva~(8). (66b) 

Substituting (59) and (58b) we arrive at 

4 1 1 
C(R) : (P+q)3 + [p(p-1)+q(q-1)]-~ + 2pq-~ 

(~) 
1 1 2 

= -~(p+q)(p+q+4) + -i~(p-q) . 

Using Table 1 and the general expression (59b) we can analyse the interaction 
strength (colour potential) between arbitrary objects. 
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Table 1. Dimensions and charges of  some representations of  SU c (3). 

CompositionK(R) C(R) Comp. 
q 3 t 4/3 qqqq 

qq 8 3 qqqq 
qq 6 10/3 qqqq 

qq~ 15 !16/3 qaqZ 
qqq 10 6 q~q 

K(R) C(R) Comp. K(R) C(R) 
27 8 qa 21 40/3 
24 25/3 qaqa 64 15 
15' 28/3 qaq2 60 46/3 
42 34/3 qSq 48 49/3 
35 12 q6 28 18 

Exercise 9. Turn back to the gg system (63). Verify that in the colour-tensor 
state 27 two gluons repulse, while in the 10 (i-0) state they do not  in teract  via 
one-gluon exchange. 

Exercise 10. Find the quark-gluon interaction energy in the state 15. Do not 
confuse two different representations with the same dimension 15; see (64c) to 
fix a proper one. 

4.2 The  d - S y m b o l  

To complete our excursion into basics of colour, one acquaintance still remains 
to be made. There is one more fundamental object of the S U ( N )  group, the so- 
called dabc symbol, which is analogous to the structure constant fabc. It is related 
with the two ways of combining two gluons into an adjoint representation, namely 
antisymmetric and symmetric in gluon colours: 

A~(1)Av(2), 
c a b ¢(s) ~ dabc A.(1)Av(2). 

Correspondingly, there are two different colour singlets made up of three gluon 
fields: 

S(a) ~ fabc a b c A,(1)A~(2)A~(3), (68a) 
a b c S(~) oc d ~ b c A ~ ( 1 ) A ~ ( 2 ) A ~ ( 3 ) .  (685) 

Gluons are bosons. Therefore any physical state must be symmetric with respect 
to gluons, that is must stay invariant under an interchange of gluon momenta, 
polarization and colour indices. Since the state S(s) in (68b) is symmetric in 
colours, it is also symmetric with respect to transposition of gluon momenta 
and polarizations only. But this is exactly the symmetry of a 3-photon system. 
Therefore in the state (68b) we can ascribe to each gluon the negative charge 
parity of a photon, Cg -- -1  = C 7. Recall that the same analogy between 
gluons and photons was there for 2-boson (radiative and hadronic) decays of 
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C-even heavy mesons we discussed above. In tha t  case symmet ry  with respect 
to gluon colours was trivial, since a colourless 2-gluon state  was a convolution 
A~(1)A~(2). 

J/~b and T meson families are C-odd. They  are produced in e+e - annihilat ion 
via one photon and, therefore, cannot decay into two photons a n d / o r  via two 
gluons. On the other hand, decay into three C-odd bosons is allowed. Three-  
photon decay is of little interest. Much more interesting is 3-gluon decay, which 
determines the total  hadronic width of such a meson. I t  is allowed as long as 
gluons consti tute a colour-symmetric state (68b) based on the d-structure. 

Consider the matr ix  

= tatb + tbta _ 1 5abe .  (69a) M 

First notice tha t  Tr(M) -- ½ + ½ - N /N  -- 0. Therefore M can be expanded as 

M = dabc t c .  (69b) 

This defines the symbol dabc in analogy with the s tructure constants labs, which 
have emerged as expansion parameters  for the commutator .  

E x e r c i s e  11. Derive 

dabc ---- 2 Tr ( t a tb t  c + tbtat  c ) (70a) 

and verify its symmetry  with respect to  all three indices. Pictorially, 

Note that  unlike f ,  the structure dabc does not enter in the QCD Lagrangian, 
so that  there is no dynamic 3-gluon interaction vertex with the d-coupling in the 
game. Therefore the picture (70b) is not a Feynman amplitude. However, as 
we shall see below, it is an important  ingredient of the graphic technology for 
calculating colour factors of Feynman amplitudes. 

a and b are parameters of the matr ix  (69a). Let us set a = b and perform the 
s tandard summation a = b = 1, 2 , . . . ,  (N 2 - 1). This gives 

N 2 - 111 = daact c , (71) 2cF~ N 

where we have recalled the definition of the quark Casimir operator ,  ta t  a = C F 1  

and used 5~a = N 2 - 1. An expression proport ional  to the unit  matr ix  equals 
another one expanded in t c. Therefore both  are zero. The 1.h.s. = 0 reproduces 
the known result for CF, the r.h.s, gives (remember, summation over repeated 
index a is always implied) 

d~ao = 0.  (72) 



Perturbative QCD (and Beyond) 117 

This means that  the d-symbol is traceless as a matrix in the adjoint representa- 
tion space, i.e. viewed as N 2 - 1 matrices (label c) acting in the (N 2 - 1) × (N 2 -1 )  
space (indices a, b). 

We now convolute the matrix M from (69a) with tb: 

t b tat b + tbt a - -~ 5abll = -2"-N + 2-----N- -- 2----N-- " 

On the other hand, from (69b) this very expression equals 

dabc tbt c -~ dabc ~ tbt c tot b ½ dabcdbce t e , 

where we made use of d~bc = dacb and dabb = O. Thus we have arrived at the 
expression for the "square" of the d-symbol: 

N 2 - 4 N 2 - 4 5~ ; - ~ (73a) 
d~bcd~bc-  ~ N 

This goes along with 

/abc/ebc = N 5ae ; = N~9.O.O.~ (73b) 

We are now ready to analyse J / ¢  decays. Let us compare the amplitudes for 
c~ annihilation into three gluons, which determine the hadronic width, and into 
two gluons and a photon (radiative width): 

000~ c 
1 3 1 3 (dabc -F ifabc) ~ dabc (74a) oc g3Tr (tatbt c) ---- ~gs ~gs 

1 2 
oc eQ g2sTr (tat b) = ~eQ gs 5ab (74b) 

In the first amplitude we have kept the dabc structure, which is the only one to 
survive in the C-odd c~ state. In the radiative amplitude Q is the fractional e.m. 
charge of the quark (Qc = 2/3). 

The Lorentz structure of the amplitudes (74) is identical, and so are the 
factors coming from the c~ wave function. Therefore, the ratio of the decay 
probabilities is determined by the colour factors (and the coupling constants). 
To calculate these probabilities we square the amplitudes and sum over colours 
in the final states (Fig. 7). 
The only subtlety is the combinatorial factors we should supply the amplitudes 
with: 1 / v ~ .  (three identical gluons) in (74a) versus 1 / v ~ .  I (two gluons) in the 
radiative decay amplitude (74b). 
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Fig. 7. Squared matrix elernents /'or onium decays J / ¢  --4 3g and J / ¢  --4 2g + "7. 

We obtain 

Fggg _ 2! (g3/4)2 dabcdabc _ as  N 2 - 4 5 as  

Fgg~ 3! (eQ g~/2)  ~ ~ab~ab 12Q 20~em N 36Q 20~em 
(75) 

This provides the means of a rough "measurement" of the QCD coupling at char- 
acteristic distances r ~ M~ -1. Comparing the ratios of hadronic and radiative 
widths for J / ¢  and T (Qb : -1 /3) ,  one can even see that a , ( M r )  < as(J /C)  
in accord with the asympto t ic  freedom. 

4.3 Successive 2-Gluon R a d i a t i o n  Off a Quark  

Combining expressions for commutator and anticommutator of t matrices (16) 
and (69a), we obtain an important relation 

1 
tat  b - 

2 N  
a b 

2 N  

i t c 1 d c ,  
--  - -  ~ab ]1 "~- -~ fabc "~- ~ abct  (76a) 

a b a b a b 

C C 

It is necessary to bear in mind that the direction of the quark line, because of 
antisymmetry of the f-symbol, is essential for the graphic equation (76b). As 
long as we have chosen to label the f-vertex clockwise, the following rule applies: 

In graphic equations where a 3-gluon coupling appears (or disappears) as 
in (76), the f-vertex has to be positioned to the right from the direction 
of the fermion line. 

E x a m p l e :  2 - G l u o n  E x c h a n g e .  To illustrate the use of the graphic colour 
algebra let us analyse the colour structure of a 2-gluon exchange between quarks. 
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First, we invoke (76b) to draw 

-- + + (77a) 

For the first two contributions in the r.h.s, we invoke the quark self-energy (43a) 
and the non-Abelian vertex (52) correspondingly. In the last term we apply the 
key equality (76b) once again to obtain 

+5  + 5  

The first two tems here vanish (da~c = 0, ]abcdebc = 0) and we arrive at 

(77a) = ~ - ~ - . C F  + 5" + ~. (77b) 

Finally, fetching the value of d 2 = (N 2 - 4)/N in (73a) and collecting terms we 

N 2 _ 1  ~ N 2 - 2 ~  + 

obtain 

(77c) 

This is the colour structure of the 2-gluon exchange between a quark and an 
antiquark. 

Exercise  12. For the double scattering of two quarks, show that 

4N~ ~ /V 
(78) 

Equations (77) and (78) can be looked upon as a decomposition of the 2-gluon 
exchange into singlet and octet pieces from the t-channel point of view. 

5 P r a c t i c u m  

Exerc ise  13. Derive (77) and (78) by applying singlet and octet state projectors 
(45) to q~ pair in the "t-channel". 
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E x e r c i s e  14. Decompose q~ scattering amplitude (77) into the s-channel singlet 
and octet  components. 

E x e r c i s e  15. An incoming q~ pair is in a colour octet  state. One of the quarks 
radiates a gluon. Verify Wl : Ws = 1 : 7, where Wl (ws) is the probabil i ty tha t  
the outgoing q~ pair is in a colour singlet (octet) state. 

E x e r c i s e  16. An incoming quark radiates a gluon, which decays into a q~ pair. 
The  produced antiquark couples to the initial quark. Verify tha t  this q~ state  is 
well prepared to form a "white" meson, namely, wl  : ws = 8 : 1. 

- ~ ~  ] =? 

E x e r c i s e  17. Prove that  an octet  q~ pair shaking off a gluon in a specific way 
displayed below always converts into a colour singlet: 

E x e r c i s e  18. The Jacobi identity (32) has the following nice pictorial represen- 
tat ion 

d 
+ + d -- 

c b c d b e b 

O. (79a) 

To understand the origin of (79a), think of "rotat ing" the colourless compound 
ifabcA a (1)A b (2)A c (3) in the "direction" T d. Applying the same logic to another  
colouless object,  namely, the d-coupled three gluons, results in 

d 
+ + d -- 0.  (79b) 

e b c d b c b 

Suggest an algebraic proof of (79b), in analogy with (33) and (34). 
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Exerc ise  19. Let the gluon "d" be absorbed by one of the other three gluons in 
(79) and find graphically the gluon-loop correction to the 3-gluon vertices. (Use 
(43b) and be careful with the orientation of 3-gluon vertices; watch the signs!) 

Exerc ise  20. Make use of (79b) and (73a) to show 

. ~ - -  N2 - 4 , ~  (81a) 

Maste rp iece .  This one won't be as easy: 

N 2 - 12 ~ _  (81b) 
2N 

Test. Giving a proof of the following identity by mere reflection, without per- 
forming any calculations (and even drawings), will show that you have mastered 
the graphic colour algebra: 

= 0 .  

6 C o l o u r  C o h e r e n c e  i n  S c a t t e r i n g  

We have considered an impact of coherence and colour conservation on internal 
time-like development of patton jets. In this section we shall discuss radiation 
accompanying space-like processes, namely scattering of charges. This gives us 
a reason to have a closer look at the physics of bremsstrahlung and to make an 
important application of the colour counting technique. 
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6.1 QCD DIS Minutes  

Deep inelastic lepton-proton scattering (DIS) with large momentum transfer 
_q2 __ Q2 >> A 2 is a classical example of a hard QCD process, which is governed 
by the space-like evolution of the par ton system. As is well known, the DIS cross 
section (structure functions) can be expressed in terms of par ton distributions as 
a probabili ty to find a quark with the longitudinal momentum fraction x inside a 
target  hadron (proton). Typical  graphs for DIS amplitudes are shown in Fig. 8. 

e -  

a) 

Q2 

e -  

b) 

p 

Fig. 8. Valence (left) and Bethe-Heitler mechanism (right) of DIS. 

The value of Bjorken x, x = - q 2 / 2 ( P q )  < 1, determines the invariant mass 
of the produced final system, that  is inelasticity of the process: 

( - + )  W 2 = ( P + q ) 2 - M ~ ,  = 2 ( P q ) ÷ q  2 = 2(Pq) 1 2(--~q) -- s ( 1 - x ) ,  s = 2(Pq) .  

For moderate  x-values, say, x ,-~ ¼, the process is dominated by lepton scattering 
off a valence quark in the proton. The scattering cross section has a s tandard 
energy behaviour a c< x -2(&=-l) , where Jex is the spin of the exchanged particle 

1 in the t-channel. It is the quark with Jex = g in the left picture of Fig. 8, so tha t  
the valence contribution to the cross section decreases with x as a e< x. 

For high-energy scattering, x << 1, the Bethe-Iteit ler mechanism takes over 
which corresponds to the t-channel gluon exchange: Jex = 1, a c< x °. 

In the Leading Logarithmic Approximation (LLA) one insists on picking 
up, for each new pat ton taken into consideration, a logarithmic enhancement  
factor c~s -+ C~s log Q2. In this approximation the scattering probability can be 
simply obtained by convoluting elementary probabilities of independent 1 ~ 2 
par ton splittings. To contribute to the LLA,  the transverse momenta  of produced 
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partons should be strongly ordered, increasing up the "ladder": k~± << . . .  <~ 
k2± << Q2. (At the level of Feynman amplitudes the ladder diagrams dominate, 
provided a special physical gauge is chosen for gluon fields.) 

What can we say about the structure of the final states produced in DIS? 
The yield of final particles is driven by the accompanying emission of (relatively) 
soft gluons. Bearing this in mind, we notice that the valence mechanism is very 
much similar to e+e - -4 q~. In a reference frame where the struck quark (the 
top quark-line in Fig. 8) and the proton remnant move in the opposite directions 
(the Breit frame: q0 0, qz - Q ;  x P  = IxP + qzl = 1 = = ~Q), the proton devoid 
of a triplet quark looks like a "hole" in a 3 colour state, in close analogy with 
the antiquark from e+e - annihilation. In the e+e - case we break the vacuum to 
produce two relativistic colour charges 3+3, while in DIS we break up the proton. 
As long as soft accompaniment is concerned, this difference is insignificant since 
both the vacuum and the proton are "white". 

However, for small x where the Bethe-Heitler contribution dominates, the 
situation is somewhat different. It is still true that the proton fragmentation 
region is in the $ state, as a whole. However, this antitriplet has now a non- 
trivial internal structure. Namely, it consists of an actual antiquark recoiling 
against the struck quark (upper quark-box in the right graph of Fig. 8) and 
the proton remnant repainted into an octet, due to t-channel gluon exchange; 

= 3 + 8. As far as colour topology is concerned, this system rather reminds 
sort of a weird 3-jet e+e - annihilation event with two q, ~ jets, Eq ~ Eq ~_ Q/2 ,  
and an energetic "gluon jet" with Eg ,,~ P ~_ Q /2x  >> Eq,q. In such circumstances 
we would expect radiation in the target fragmentation region to be enhanced as 
compared to the current fragmentation (struck quark), according to the ratio of 
the colour charges N / C F .  

The fact that the current quark jet is identical to "half of" e+e - annihilation 
is well established experimentally. Envisaged peculiarity of the target fragmenta- 
tion at small x, which is due to the "colour-octet-proton" phenomenon, remains 
to be seen at HERA. 

In the rest of this section we shall verify our qualitative expectation of the 
effect a colour exchange in a scattering process produces upon accompanying 
gluon radiation. To do so, we first recall the basics of QED bremsstrahlung. 

6.2 B r e m s s t r a h l u n g  

Let us consider photon bremsstrahlung induced by a charged particle (elec- 
tron) which scatters off an external field (e.g. a static electromagnetic field). 
The derivation is included in almost every textbook on QED, so we confine 
ourselves to the essential aspects. 

The lowest order Feynman diagrams for photon radiation are depicted in 
Fig. 9, where Pl, P2 are the momenta of the incoming and outgoing electron 
respectively and k represents the momentum of the emitted photon. The corre- 
sponding amplitudes, according to the Feynman rules, are given in momentum 
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Fig. 9. Bremsstrahlung diagrams for scattering off an external field. 

space by 

m  (pl,Sl) (82a1 M~ = efi(p2,s2) V(p2 + k - P l )  m'ff~_'(-~l 2 

m + ~ 2 + ~  V ( p 2 + k - p l ) u ( p l , s l )  • (82b) Mf ~ = e fi(p2, s2) 7"  m 5 "--- (-~2 + k) 2 

Here V stands for the basic interaction amplitude which may depend in general 
on the momentum transfer (for the case of scattering off the static e.m. field, 
V = 3'0). 

First we apply the soft-photon approximation, w << pO, po, to neglect ~ terms 
in the numerators.  To deal with the remaining matr ix  s t ructure in the numerators  
of (82) we use the identity ~ 7 r = -3 ' "  ~ + 2 p" and the Dirac equation for the 
on-mass-shell electrons, 

(m + i~1) 7 r u(pl) = (2p~' + [(m - ~1 ]) U(pl) = 2p~ u(pl ) ,  

fi(P2) 7 v (m + ~2) = u(P2) ([ (m - ~2 ] + 2p~) = 2p~ ~2(p2). 

Denominators for real electrons (p~ = m 2) and the photon (k 2 = 0) become 
m 2 - (pl - k) 2 = 2(plk) and m 2 - (P2 + k) 2 = -2(p2k) ,  so that  for the total  
amplitude we obtain the factorized expression 

M ~' = e j r  Mel. (83a) 

Here Me1 is the Born matr ix  element for non-radiative (elastic) scattering, 

Me1 = fi(P2, s2) Y (p2 - Pl ) u(pl , sl) (835) 

(in which the photon recoil effect has been neglected, q = p2 A- k - P l  ~ p2 - P l ) ,  
and j "  is the soft accompanying radiation current 

(83c) J r ( k ) -  (plk) (p2k) 

The factorization (83a) is of the most general nature.  The form of j r  does not 
depend on the details of the underlying process, neither on the nature  of par- 
ticipating charges (electron spin, in particular).  The only things which mat te r  
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are the momenta  and charges of incoming and outgoing particles. Generaliza- 
tion to an arbi t rary  process is straightforward and results in assembling the 
contributions due to all initial and final particles, weighted with their  respective 
charges. 

The soft current (83c) has a classical nature. It  can be derived form the 
classical electrodynamics by considering the potential  induced by change of the 
e.m. current due to scattering. 

To calculate the radiation probabil i ty we square the ampli tude projected onto 
sum over A and supply the photon phase space a photon polarization state ~ ,  

factor to write down 

w2 dw d ~  
d r = e 2  I  J"l 2 (2 )3 dWo,. (84) 

A=I,2 

The sum runs over two physical polarization states of the real photon,  described 
by normalized polarization vectors orthogonal to its momentum: 

= =0 ;  1,2. 

Within these conditions, the polarization vectors may be chosen differently. Due : 
to gauge invariance such an uncertainty does not affect physical observables. 
Indeed, the polarization tensor may be represented as 

l u . v  
eAe~ = _g~V + tensor proportional  to k u a n d / o r  k ~ . (85) 

A : l , 2  

The  latter,  however, can be dropped since the classical current (83c) is explicitly 
conserved, j~k~  = O. Therefore one may enjoy gauge invariance and employ an 
arbi t rary  gauge, instead of using the physical polarizations, to calculate accom- 
panying photon production. 

The Feynman gauge being the simplest choice, 

D * v  £)e A ~ _g~V , 
)~:1 ,2  

we arrive at 
dW _ 

d N -  dWel 4~r 2 (ju)2 w dw dr27 

a dw dY2, r 1 -  cos 08 

~r W 27r (1-- cos O1) (1-- cos O2 ) " 

The lat ter  expression corresponds to the relativistic approximation vl, v2 ~ 1: 

2(plp2) (m.~o2) 2 ( i  - n l  • n__2_) 
_(j~)2 _ (p lk ) (p2k)  -t- 0 ~- w ---~ (1 - n l  : 'n -~l - -  n2 .  n) ' 

which disregards the contribution of very small emission angles 0 2 g (1 - v 2) = 
m2/p2  i << 1, where the soft radiat ion vanishes (the so-called "Dead Cone" re- 
gion). For the definition of angles see Fig. 10. 



126 Yu. L. Dokshitzer 

I OS 01 

Fig. 10. Bremsstrahlung diagram containing the definitions of angles. 

If the photon is emitted at a small angle with respect to, say, the incoming 
particle, i.e. O1 << O2 -~ Os, the radiation spectrum (83) simplifies to 

c~ sin 01 dO1 dw a dO~ dw 
d N _  

( 1 -  c o s O 0  w ~ O12 w 

Two bremsstrahlung cones appear, centred around incoming and outgoing elec- 
tron momenta. Inside these cones the radiation has a double-logarithmic struc- 
ture, exhibiting both the soft (dw/w) and collinear enhancements (dO2/O2). 

6.3 I n d e p e n d e n t  and  C o h e r e n t  R a d i a t i o n  

In the Feynman gauge, the result for the accompanying radiation factor dN is 
dominated by the interference between the two emitters: 

aN ~ - (plk) 0~k) ~ (plk)(p~k)" 

Therefore it does not provide a satisfactory answer to the question, which part 
of radiation is due to the initial charge and which is due to the final one? 

There is a way, however, to give a reasonable answer to this question. To do 
so, one has to sacrifice simplicity of the Peynman-gauge calculation and recall 
the original expression (84) for the cross section in terms of physical photon 
polarizations. It is natural to choose the so-called radiative (temporal) gauge 
based on the 3-vector potential A, with the scalar component set to zero, -40 - 0. 
Our photon is then described by (real) a-vectors orthogonal to one another and 
to its a-momentum: 

(E~. E~,) = ~ , ,  (E~. k ) = 0 .  (86) 

This explicitly leaves us with two physical polarization states. Summing over 
polarizations obviously results in 

dN o¢ ~ Ij(k)-e~l 2 = 2 ja(k)" [~a~ - n~n~] . j~(k) ,  (87) 
A=1,2 c~,~3=1...3 
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with a ,  fl 3-dimensional indices. We now subst i tute  the soft current  (83c) in the 
3-vector form, p~ -+ vip0i, and make use of the relations 

ka k~ ] 2 sin 2 0 i  (888) 
(,'d. ~ / ~ -  k~ / ('')~ =~'  

[ kok.] (v l )~  ~ i¢ 5 j (v2)~ = vlv2(cosO12 - cos01 cosO~) ,  (88b) 

to finally arrive at 

d N =  ?- { TQ + T~2 - 2,7 } .  __dw __dr2 (898) 
r w 4r 

Here 

2 sin 2 @i 
T~i = vi 

(1 - -  vi cos Oi) 2 '  i = 1 , 2 ,  (89b) 

vlv2 (cos O12 - cos O1 cos 02) (89c) 
J ~ (1 - vl cos O1)(1 - v2 cosO2) " 

The  contributions 7~1,2 can be looked upon as being due to independent radiation 
off initial and final charges, while the J - t e r m  accounts for interference between 
them. The  independent  and interference contribution,  taken together ,  describe 
the coherent emission. I t  is s traightforward to verify tha t  (89) is identical to the 
Feynman-gauge result (83): 

T~ooho~. -- T~,.a.,. - 2 J  = -w2(j~ ' )  2 , T~i.dop. - - - -  T~I -'l- "~2 • (90) 

6.4 T h e  R S l e  o f  I n t e r f e r e n c e :  Strict A n g u l a r  O r d e r i n g  

In the relativistic limit we have 

sin 2 O1 2 
7~1 _ - -  1 ,  (91a) 

( i  - cos O1) 2 a l  

cos O12 - cos O1 cos 02 a l  + a2 - a12 
J ~ = - 1 , (91b) 

(1 - cos O1)(1 - cos O2) ala2 

where we introduced a convenient nota t ion 

a l = 1 - n n 1 = 1 - c o s O 1 ,  a 2 = 1 - c o s O 2 ,  

812 = i - - n l n 2 - - - -  1 - - c O S O s .  

The variables a are small when the agles are small: a _~ ½0 2. 
The  independent  radiat ion has a typical  logari thmic behaviour  up to large 

angles a l  ~ 1: 
dal  

dN1 oc TQ s inOdO o <  - -  

a l  
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However, the interference effectively cuts off the radiation at angles exceeding 
the scattering angle: 

dN c< 7¢ooh.,. sin~gdO = 2 a 1 2 - -  
da da dO 2 

o(  o(  a l  "~ a 2  >>  a 1 2  
a l a 2  - ~  0 4 ' - -  

To quantify this coherent effect, let us combine an independent contribution with 
half of the interference contribution to define 

2 
VI =~1 -J~--- -- 

al 
2 

V2 = ~ 2  - J =  - -  
a 2  

7¢~oho~. = Vx + V2. 

a l + a 2 - - a l 2  a 1 2 + a 2 - - a l  

ala2 ala2 (92a) 
a l  + a2 -- a12 a12 + a l  -- a2 

a l  a2 a l  a2 

(92b) 

The emission probability Vi can be still considered as "belonging" to the charge 
# i  (V1 is singular when al --+ 0, and vice versa). At the same time these are no 
longer independent probabilities, since V1 explicitly depends on the direction of 
the partner-charge #2; conditional probabilities, so to say. 

It is straightforward to verify the following remarkable property of the "con- 
ditional" distributions V: after averaging over the azimuthal angle of the radi- 
ated quantum, n, with respect to the direction of the parent charge, nl ,  the 
probability V1 (n, nl; n2) vanishes outside the O,-cone, namely 

fo 2~ (a12 - al) • (93) <Yl).o,_h - 2~ Vl(n, nl;n2)  = a~ 

It is only a2 that changes under the integral (93), while al, and obviously a12, 
stay fixed. The result follows from the angular integral 

f0 2~ d¢~,nl 1 

2rr a2 

1 1 

IcosO1-  cosOs[ [ a l 2 - a l [  

Naturally, a similar expression for V2 emerges after the averaging over the az- 
imuth around 112 is performed. 

We conclude that as long as the total (angular-integrated) emission prob- 
ability is concerned, the result can be expresses as a sum of two independent 
bremsstrahlung cones centred around nl and n2, both having the finite opening 
half-angle 08. 

This nice property is known as a "strict angular ordering". It is an essen- 
tial part of the so-called Modified Leading Log Approximation (MLLA), which 
describes the internal structure of patton jets with a single-logarithmic accuracy. 
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6.5 Ang u la r  Ordering  on  the  Back of  an E n v e l o p e  

What is the reason for radiation at angles exceeding the scattering angle to be 
suppressed? Let us try our physical intuition and consider semi-classically how 
the radiation process really develops. 

A physical electron is a charge surrounded by its proper Coulomb field. In 
the quantum language, the Lorentz-contracted Coulomb-disk attached to a rel- 
ativistic particle may be treated as consisting of photons virtually emitted and, 
in due time, reabsorbed by the core charge. Such virtual emission and absorp- 
tion processes form a coherent state which we call a physical electron ("dressed" 
particle). 

This coherence is partially destroyed when the charge experiences an impact. 
As a result, a part of intrinsic field fluctuations gets released in the form of 
real photon radiation: The bremsstrahlung cone in the direction of the initial 
momentum develops. On the other hand, the deflected charge now leaves the 
interaction region as a "half-dressed" object with its proper field-coat lacking 
some field components (eventually those that were lost at the first stage). In the 
process of regenerating the new Coulomb-disk adjusted to the final-momentum 
direction, an extra radiation takes place giving rise to the second bremsstrahlung 
cone. 

Now we need to be more specific to find out which momentum components 
of the electromagnetic coat do actually take leave of absence. 

A typical time interval between emission and reabsorption of the photon k 
by the initial electron Pl may be estimated as the Lorentz-dilated lifetime of the 
virtual intermediate electron state (Pl - k) (see the left graph in Fig.9), 

E1 E1 ~ 1 w (94) 
t,,oo, ~ _ _ k) l = - k 

Here we restricted ourselves, for simplicity, to small radiation angles, k± ~wO << 
kll ~ w. The fluctuation time (94) may become macroscopically large for small 
photon energies w and enters as a characteristic parameter in a number of QED 
processes. As an example, let us mention the so called Landau-Pomeranchuk 
effect - -  suppression of soft radiation off a charge that experiences multiple 
scattering propagating through a medium. Quanta with too large a wavelength 
get not enough time to be properly formed before successive scattering occurs, 
so that the resulting bremsstrahlung spectrum behaves as dN c( dw/vf~ instead 
of the standard logarithmic dw/w distribution. 

The characteristic time scale (94) responsible for this and many other radia- 
tive phenomena is often referred to as the formation time. 

Now imagine that within this interval the core charge was kicked by some 
external interaction and has changed direction by some Os. Whether the photon 
will be reabsorbed or not depends on the position of the scattered charge with 
respect to the point where the photon was expecting to meet it "at the end of the 
day". That is, we need to compare the spatial displacement of the core charge 
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Ar with the characteristic size of the photon field, )~11 " w - i ,  )~± ~ k ± - i :  

1 
~ Iv, N - I" t° .o. . . .  , , , e ,  

1 
A t ±  ~ c o s  • tn.o~ ~ O s  w e  2 

= All <:~ All; 
(95) 

For large scattering angles, e s  ~ 1, the charge displacement exceeds the photon 
wavelength for arbi t rary e ,  so that  the two full-size bremsstrahlung cones are 
present. For numerically small e s  << 1, however, it is only photons with e 
~s tha t  can notice the charge being displaced and thus the coherence of the 
state being disturbed. Therefore only the radiation at angles smaller than  the 
scattering angle actually emerges• The other field components have too large a 
wavelength and are easily reabsorbed as i f  there were no scattering at all. 

So what counts is a change in the current, which is sharp enough to be no- 
ticed by the "to-be-emitted" quantum within the characteristic formation/field- 
fluctuation time (94) of the latter. 

Radiation at large angles has too s h o r t  a formation t ime to become aware of 
the acceleration of the charge. No scattering - -  no radiation• 

The same argument applies to the dual process of production of two opposite 
charges (decay of a neutral  object, vacuum pair production, etc.). The  only dif- 
ference is that  now one has to take for Ar  not a displacement between the initial 
and the final charges, but  the actual distance between the produced particles 
(spatial size of a dipole), to be compared with the radiation wavelength. 

6.6  T i m e  D e l a y  a n d  D e c o h e r e n c e  Effects  

So far, we were dealing with particle scat ter ing/product ion as i n s t a n t  processes. 
Such they usually are (compared to typical formation times). Nevertheless, let 
us imagine that  our electron in Fig. 9 is delayed by some finite At  = ~- "in the V- 
vertex". For example, as if some metastable state was formed with characteristic 
lifetime ~- = F - i .  

In such a case one would have to take into consideration an extra  l o n g i t u d i n a l  

charge displacement due to finite delay, and (95) would be modified as 

A r l l  .~ Aii + e r  ~:~ All ..~ w - i  . 

Now the condition Ar H < All for radiation at O > Os to be coherently suppressed 
would imply an additional restriction ~- < w -1 to be satisfied. For large enough 
values of the delay time, ~- >> E - i ,  this new condition seriously affects radiat ion 
with comparatively large energies w > T - i  (but still s o f t  in the overall energy 
scale, w << Ei).  Such photons acquire sufficiently large resolutions for coherence 
to be completely destroyed by the delay. Therefore they are bound to form two 
independent bremsstrahlung cones even for Os -- 0. 
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So we would expect the accompanying radiat ion pa t te rn  to be that  of the 
coherent antenna T£ooh,, for softer radiation, r -1 > w, and, to  the contrary, a sum 
of two independent sources T~I + 7~2 for relatively hard photons,  r -1 < w << E.  
This qualitative expectat ion has a nice quanti tat ive approval. 

The initial and final electron currents in (83c) now acquire different phases 
due to  difference between the Freeze! and Move! t imes tot and to2: 

j "  ~ j~., ( k ) =  p~ e i~t°l P~ e i~°t°2 (96) 
• ( p l k )  (p k) " 

We should be careful when calculating the radiation probability, since the new 
current (96) is no longer conserved: (jVd.~. kv) ~ 0. In particular,  we cannot use 
the Feynman-gauge square of this current. The  conservation could be formally 
rescued by adding the term describing our charge being frozen within the t ime 
interval to2 - tol, namely 

jo~ 
~ja~el.(k) - -  _ _  { e  iwt°l  _ e i w t o 2  } . 

co 

However, we can still use the physical polarization method instead, which re- 
mains perfectly applicable. The relative phase enters in the interference term, so 
that  the soft radiation pat tern  gets modified according to 

~r w 4~r 

To make our pedagogical setup more realistic, imagine that  it was the formation 
of a meta-stable (resonant) state tha t  caused the delay. In such a case the delay- 
time r - t0i - to2 would be distributed according to the characteristic decay 
exponent 

Averaging (97) with this distribution immediately results in a F-dependent  ex- 
pression, namely, 

d N  -- _ a { T g l + 7 ~ 2 _ 2 J . X v ( w ) }  dw d ~  
~r w 41r 

with the profile factor 

[/7 ] X r  =- N F d r  e - v r  • e i~°r = ~ = F 2  + W2 . 

The answer can be wri t ten as a mixture of independent and coherent pat terns  
with the weights depending on the ratio w / F  via the profile function Xv ,  

d N  - ~ &o d$? 
w 4re { [ 1 - X v ( W ) ] ' T ~ ' = d e " ( n ) + x v ( w ) ' T ~ ° h ° " ( n ) } "  (98) 

X(w) acts as a "switch": For long-wave radiation X(w << F)  -+ 1 and the s tandard 
coherent antenna pat tern  appears; vice versa, for large frequencies X(W >> F)  -+ 
0, and coherence between charges is dashed away, as we expected. 
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Example :  Soft P h o t o n s  and  the  W - W i d t h .  This simple phenomenon finds 
an intriguing practically important implication in the dual channel. Suppose that  
in the e+e - annihilation process a pair of non-relativistic W + W  - is produced. 
An intermediate boson has a finite life-time, /1 _~ 2 GeV, and decays either 
leptonically or into a quark pair producing two hadron jets at the end of the 
day. Thus, the decays of W + and W -  produce ultra-relativistic electromagnetic 
currents and occur independently from one another within a characteristic time 
interval IAt01 ,~/~-1. The process is displayed in Fig. 11. 

P~ 

~+ 

Fig. 11. Leptonic decay of a W + W  - pair as an illustration of time-dependent deco- 
herence effects. 

Therefore one meets exactly the same "delayed acceleration" scenario as ap- 
plied to the final-state currents. As a result, eq. (98)describes the photon radi- 
ation accompanying l ep tonic  decays of non-relativistic W + and W - .  

A non-trivial w-dependence of the profile function X r  comes together with 
the functional dependence on the angle 812 between the leptons. This suggests 
a programme of measuring the W-width Fw by studying the variation of the 
radiation yield with 812. 

6.7 QCD Sca t te r ing  and  t -Channe l  R a d i a t i o n  

Both the qualitative arguments of the previous sections and the quantitative 
analysis of the two-particle antenna pattern apply to the QCD process of gluon 
emission in the course of quark scattering. So two gluon-bremsstrahlung cones 
with the opening angles restricted by the scattering angle 88 would be expected 
to appear. 

There is an important subtlety, however. In the QED case it was deflection of 
an electron that changed the e.m. current and caused photon radiation. In QCD 
there is another option, namely to "repaint" the quark. Rotation of the colour  

s ta te  would affect the colour current as well and, therefore, must lead to gluon 
radiation irrespectively of whether the quark-momentum direction has changed 
or not. 

This is what happens when a quark scatters off a colour  field. 
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b b 

Fig. 12. Gluonic Bremsstrahlung diagrams for k± ~ q±. The characters a and b denote 
the colours of the radiated and exchanged gluons. 

In Fig. 12 the amplitudes are shown for the radiat ion off the  external  quark 
lines. In principle, a graph with the gluon-gluon interaction vertex should also be 
considered. However, in the limit k± << q±, with q± ~ P2± - P l ±  the momentum 
transfer in the scattering process, the first contributions dominate (recall the 
"soft insertion rules"). 

From the Feynman amplitudes of Fig. 12 the accompanying soft radiat ion 
current ju  factors out, the only difference with the Abelian current (83c) being 
the colour generators: 

= to ( - t o t { (99) 
\ (plk) ] k, (p2k) ] J 

p,. 
Introducing the abbreviation A~ = ~ ,  we apply the s tandard decomposit ion 

of the product  of two triplet colour generators (76), 

tatb 1 5 1 (dabc + ifabc) t c 

to rewrite (99) as 

= 1 A2) [tb, t a] jr, ½(A, - A2) {tb, t ~} + -~(A1 + 

/ 1  ~b d ~b~ ) ½(Al + A2) i f  ab~t ~ =½(Ai-A2) ~5 + t c - 

To find emission probability we need to sum the product  of currents over colours. 
Three colour structures do not "interfere", so it suffices to evaluate the squares 
of the singlet, 8s and 8~ structures: 

( 1 ) 2  (~N)2 1 E ~--~5.b = (N 2 - 1) ---- ~ -~ .  CF ; 
a,b 

1 N 2 - 4  N 2 - 4  
~(½d~b~t~)2- -  4 -N- (t~)2 = 4--'--ff - - ' C F ;  
a,b 

i 1 N "CF. (~ /obot°): = ~ N (t°) ~ = -~ 
a,b 
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The common factor CF = (t b) 2 belongs to the Born (non-radiative) cross section, 
so that the radiation spectrum takes the form 

1 ( 1 N 2 - 4 ) ( A I _ A 2 ) . ( A I _ A 2 )  d g  c( ~ ~ - - ~ j " . ( j ~ ) * =  ~ - ~ +  ~/~ 
¢olouF 

N (AI + A2)" (A1 + A2) 
+ 4  

A simple algebra leads to 

dN c( CF (A1 - A2). (A1 - A2) + NA1 • A2 • (100) 

Dots here symbolize the sum over gluon polarization states. Similarly to the 
case of "delayed scattering" discussed above, the current (99) does not conserve 
because of non-commuting colour matrices. We would need to include gluon 
radiation from the exchange-gluon line and from the source, to be in a position 
to use an arbitrary gauge (e.g. the Feynman gauge) for the emitted gluon. Once 
again, the physical polarization technique (86) simplifies our task. To obtain the 
true accompanying radiation pattern (in the k± << q;  region) it suffices to use 
the projectors (88) for the dots in (100). In particular, 

A=1,2 

Accompanying radiation intensity finally takes the form 

d N  oc CF T~coh,,. + g J .  (101) 

The first term proportional to the squared quark charge is responsible, as we 
already know, for two narrow bremsstrahlung cones around the incoming and 
outgoing quarks, O1,02 < Os. On top of that an additional, purely non-Abelian, 
contribution shows up, which is proportional to the gluon charge. It is given by 
the interference distribution (89c), (91b), 

al + a2 - a12 .7-  1, 
ala2 

which remains non-singular in the forward regions O1 << Os and 02 << O~. At 
the same time, it populates large emission angles O = O1 ~ 02 >> Os where 

dNc<d~2Jc<s inOdO - 1  ~ 02 . 

Indeed, evaluating the azimuthal average, say, around the incoming quark di- 
rection, we obtain 

f d ¢ l  1 ( a l - a l 2  ) 2 
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Thus we conclude that the third complementary bremsstrahlung cone emerges. 
It basically corresponds to radiation at angles larger than the scattering angle, 
and its intensity is proportional to the colour charge of the t-channel exchange. 

We could have guessed without actually performing the calculation that at 
large angles the gluon radiation is related to the gluon colour charge. As far as 
large emission angles O >> O8 are concerned, one may identify the directions of 
initial and final particles to simplify the total radiation amplitude as 

J " = T b T  a p~ TaTb p~ ~ (TbTa-TaTb) pU plk 
This, with account of the commutation relation (37), immediately leads to 

• 2 N c¢ (~fab~) as a proper colour charge, irrespective of the nature of a scat- 
tered particle. 
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1 Introduction 

The study of strongly interacting mat te r  is a fascinating subject for a variety of 
reasons. It is needed to describe the first few microseconds in the evolution of our 
universe, and it provides the equation of state for stellar mat te r  at high density. 
To study mat te r  at extreme densities one has to develop the thermodynamics  
of strong interaction physics. But first of all we have to define what  "ex t reme 
density" means. Let us have a look at the density of mat te r  in the present world. 
It covers a range from 10 -6 up to 10 as nucleons/cm 3. But  what  is beyond this 

10 -~0 100 101° 1020 1030 t04° 

I I I I I I 

present atomic nuclear 
universe matter matter 

t 136 1020 1025 1038 

1050 nucleons 
[ cm 3 

Fig. 1. Range o£ observable matter densities. 

upper bound given by the density of nuclear mat ter?  
To get a feeling for the new things which might appear  we think about  a 

gas of nucleons which is compressed more and more. Of course the nucleons 
have an intrinsic structure, the quarks. But  in the beginning when the distance 
between the nucleons is much bigger than their extension it is well justified to 
speak about  nucleons as separate particles. However when the density increases 
the concept of particles called "nucleons" becomes meaningless since one cannot  

* Lectures presented at the workshop "Lattice QCD and Dense Matter" organised by 
the Graduiertenkolleg Erlangen-R.egensburg, held on October l l th-13th,  1994 in 
Kloster Banz, Germany 



Quark Matter and High Energy Nuclear Collisions 137 

isolate composite particles in the dense "quark soup". Thus the constituents of 
this new kind of matter are quarks and not hadrons anymore. At some point 
during the compression we expect a transition from hadronic matter to quark 
matter and the interesting questions are of course: What properties does quark 
matter have and can we create such a quark phase in the laboratory? 

It is very instructive to compare strongly interacting matter described by 
QCD with the case of electrons and nuclei interacting via electromagnetic forces 
and forming a solid. In the same way as the electromagnetic Coulomb potential is 
screened in a dense medium (Debye screening) colour screening of the confining 
potential is expected in dense matter of quarks and gluons called the quark-gluon 
plasma. The confining potential which in a simple model is given by 

is replaced by [1] 

Vco.f(r) = ar  (1) 

1 - e - " r  
Vscr(r) - - -  (rr (2) 

#r 

which allows for asymptotic coloured states (cf. Fig. 2). This yields the following 
picture: At low density strongly interacting particles form a colour insulator, 
namely hadronic matter, whereas at high density due to screening of the potential 
matter becomes a colour conductor, the quark-gluon plasma. A second feature of 

V(r) 

. . . .  

screened 

r 

Fig. 2. Colour confining and colour screened potential. 

quark matter is the restoration of chiral symmetry. Let us again compare QED 
and QCD. In metals the free electron mass becomes an effective mass due to 
interactions of the electron with lattice vibrations. In QCD it is just the other 
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way round. Due to a non-trivial vacuum structure of QCD quarks in the nucleon 
have an effective mass (constituent mass) of about one third of the nucleon mass, 
whereas in the quark-gluon plasma the masses of quarks nearly vanish since we 
have entered the regime of perturbative QCD. Thus the chiral symmetry of the 
QCD Lagrangian which is spontaneously broken in hadrons is restored in the 
quark-gluon plasma. 

These considerations yield the phase diagram shown in Fig. 3. At small tem= 
peratures T and baryochemical potential #B strongly interacting matter is in the 
hadronic phase. If both T and #B are very high the regime of the quark-gluon 
plasma is reached. However, there might be a third phase in between where 
quarks are deconfined but carry a constituent mass already. Again we can find 
an analogous case in solid state physics: Insulator, superconductor and conduc- 
tor phases. To get a qualitative picture of the phases let us briefly discuss the 
two limiting cases of vanishing temperature or vanishing baryochemical poten- 
tial, respectively. In the latter case the critical temperature of deconfinement 
and chiral symmetry restoration is expected to be the same, whereas at T = 0 
the critical baryochemical potential of deconfinement might be smaller than the 
one of chiral symmetry restoration. To find out whether there are two or three 

T 

hadronic matter 

quark-gluon plasma 

Fig. 3. Phase diagram of  strongly interacting matter. 

~t B 

phases and to determine the critical behaviour of the phase transition(s) one 
has to study statistical QCD. The dynamics of strongly interacting matter is 
described by the Lagrangian 

£ = - [O~A~ - OvAl, - g f b c A ,  A~,] - Z ¢ !  [z ~ + rn l 
f 

In contradistinction to QED gauge bosons (gluons) carry colour charges and thus 
interact directly with each other. Thermodynamic properties can be calculated 
from the QCD partition function 
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= fZ)~l, :D~l, :DA e -S(A'¢'~) (4) 

with the action 
1/T 

= f 3x,(x,  = (5) 
o v 

where an imaginary time T is introduced. Thus one has to work in Euclidean 
space with bosons (fermions) obeying (anti)periodic boundary conditions in the 
T direction. Pressure and energy density of the system are given by 

( O l n Z ~  
P = T \ ~ ]  T ' 

f OlnZ  
* = V -  

(6) 

(7) 

Obviously the evaluation of the path integral (4) is a highly non-trivial challenge 
as soon as one is leaving the perturbative regime. Indeed to describe the hadronic 
matter phase and the phase transition one has to deal with a large coupling 
constant which requires a non-perturbative treatment. Up to now the only known 
rigorous method to calculate the QCD partition function is to formulate the 
problem on a lattice [2]. This yields a generalized spin problem which can be 
solved by computer simulation [3]. Of course the computational evaluation of 
path integrals is also very much involved giving rise to a new branch of physics 
called computational particle physics. These computer simulations aim at the 
calculation of thermodynamic quantities and also of hadron masses in order to 
set the scale for other quantities. This approach enables us to study the critical 
behaviour of strongly interacting ma t t e r  ab initio. For a discussion of these 
techniques we refer the reader to the literature and to the contributions by Negele 
and Hasenfratz within these proceedings [4]. In the following we rather present 
main results of lattice calculations obtained so far concerning thermodynamic 
quantities and especially the phase transition. 

Figure 4 shows energy density e and pressure p in the neighborhood of the 
phase transition. At small temperature these quantities are governed by the 
lightest hadrons, the pions. For a free pion gas the energy density is given by 
three times the pressure. The influence of all other hadrons is suppressed due to 
their masses being much bigger than the pion mass. At very high temperatures 
we expect to enter the perturbative regime of QCD since the running coupling 
constant decreases with increasing momenta and thus with increasing temper- 
ature. This means that for T -+ c~ the values of e and p should be given by 
the energy density and pressure of a gas of free quarks and gluons. Calculations 
shown in Fig. 4 support the assumption that quarks and gluons are the relevant 
degrees of freedom at high temperatures. 
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Fig. 4. Energy density and pressure as functions o f  the temperature around the phase 
transition. 

In Fig. 5 two quantities are shown which parametrize deconfinement and 
chiral symmetry restoration, respectively. The Polyakov loop 1 [5] 

(L) = e - v ( r = ° ° ) / T  (8) 

vanishes as long as the quarks axe confined but gets a positive value in the 
deconfined phase. The chiral condensate [6] 

x = ( '¢¢ )  (9) 

is proportional to the effective quark mass which is positive as long as one 
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Fig. 5. Polyakov line and chlral condensate as functions o f  the temperature around the 
phase transition. 

1 V(r) is the quark-quark potential (cf. Fig. 2). 
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is dealing with constituent quarks and vanishes when quarks become current 
quarks, i.e. when chiral symmetry  is restored. 2 Both figures 4 and 5 seem to in- 
dicate tha t  for # s  = 0 there is a single phase transition at about  Tc = 150 MeV 
and ec = 1 GeV/fm 3 from hadronic mat te r  to a plasma of deconfined and 
massless quarks and gluons. To get a feeling for the magnitude of the criti- 
cal energy density it is instructive to compare with the typical density of nuclei 
~A = 0.15 GeV/fm 3 and the density of protons cp = 0.5 GeV/ fm 3. 

However all these considerations remain purely academic if there is no op- 
por tuni ty  to observe such a phase transition. There might be or might have 
been such phase transitions in nature - probably the early universe was in a 
quark-gluon plasma phase - however the signals for the existence of this phase, 
if there are any, are hard to disentangle from other  effects. Thus it would be 
a big achievement if one could create a quark-gluon plasma in the laboratory.  
Colliding two heavy nuclei at high momenta  is a promising place to look for it 
since we expect  the creation of a bubble of very dense mat te r  at least in the 
center of the collision zone. If the collision energy is large enough the density 
of the bubble should be so high that  the mat te r  inside can no longer stay in 
the hadronic phase. Once the bubble is formed it expands, cools off, hadronizes 
again and finally emits free hadrons which can be detected. Wha t  do we need to 
perform such experiments? To get the nuclei accelerated one has to work with 
heavy ion beams. The demand of high collision energies requires powerful accel- 
erators where ions can be injected. They  are presently available at the AGS at 
Brookhaven National Laboratories (BNL) and at the SPS at CERN. 

In the next  section we will elaborate on the possibility of creating a quark- 
gluon plasma in high energy nuclear collisions. Section 3 is devoted to the hadron- 
quark transit ion whereas in the last section the question is discussed how to find 
unambiguous signals for the creation of a quark-mat ter  phase. 

2 N u c l e a r  C o l l i s i o n s  

Before tMking about  a theoretical description of heavy ion collisions it might 
be interesting to get some information about  experiments which have been per- 
formed up to now and which are planned for the future. Status and plans of 
heavy ion experiments are briefly summarized in Table 1. The aims of heavy 
ion experiments can be divided in three (chronological) phases. In phase I the 
questions was whether the experiments are feasible, whether high densities are 
attainable and whether the observed particle behaviour shows new features. 
They have been answered positively. We will report  on some of the new features 
in this section as well as in the last one. In phase II one has to find out whether  
the system thermalizes and whether it reaches the deconfined phase. If this is 
the case then finally the properties of the created quark-gluon plasma can be 
studied (phase III). 

2 Of course the quarks still carry their current quark mass which breaks chiral symme- 
try explicitly. However this becomes less important when the temperature increases. 
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Tab le  I .  Properties of heavy ion accelerators. Energies are given in Ge V per nucleon. 

Time 

1986 - 1993 

1 9 9 3  - 1 9 9 9  

"2000" 

Accelerator Beam CMS Energy 
(GeV/A) 

BNL-AGS -.~ Si 5 

CERN-SPS --r S 20 
AGS + booster -~ U 4 

S P S + P b i n j .  - + U  17 
BNL-R,HIC --+ U 200 

CERN-LHC --~ U 5500 

To decide whether  it is possible to create a piece of quark ma t t e r  inside a hot  
bubble originating from a heavy-ion collision we have to answer the following 
basic questions (see [7] and references therein): Is the bubble  hot enough so tha t  
the sys tem crosses the phase transit ion point? Is the bubble  thermMized so tha t  
it reaches the deconfined phase? Is the bubble large enough so tha t  we can s tudy 
bulk propert ies  and critical behaviour near  the phase transi t ion? 

Let us s tar t  with an est imate of accessible energy densities using the  mult i-  
plicity (dN/dy)AB of hadrons measured per unit  central  rapidi ty  in A - B  colli- 
sions. Assuming free flow the initial energy density is given by 3 

1 (d_~yN) (10) 
f-o ---- w Yoo AB 

with the initial volume Vo and the energy per hadron w ~_ 0.5 GeV. The  initial 
volume can be calculated via 

V0 ---- 7rR~ T (11) 

with the nuclear radius RA = 1.2 A 1/3 fm and the  format ion  t ime  T "~ 1 fro. 
Finally we have to calculate the multiplici ty ( d g / d y ) A B .  I t  is related to the 
multiplici ty (dN/dy)p  of p-p and p-p collisions. A fit of all da ta  from SPS to 
Tevatron energies suggests the form 

(dN/dy)p  '~ l n [v~ / 2 rnp ] . .  (12) 

This result  can be ext rapola ted  to  A - B  collisions using 

(dN/dy )AB ,.,, ; A a for A -- B 
( dg / dy )p  (A1/3B2/S) a for A >> S 

(13) 

s The assumption of isentropic expansion instead of free flow gives approximately the 
same result in the studied energy range. 
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with 1 < a < 4/3. Collecting all formulae together we get 

%AB ~ [ (A~I3 B213)<~.] ln[x/712mp] GeVifm 3 
- [2~r(1.2 BI/3)2j  

(14) 

Using a value of a = 1.1 as obtained from p-A collisions we can calculate the 
energy densities for Pb-Pb collisions for the various accelerators and find the 
results listed in Table 2. If more rescattering happens in Pb-Pb collisions corn- 

Table 2. Attainable energy densities at various heavy ion colliders. 

F a c i l i ~ e o  

BNL-AGS 4[ 
CERN-SPS 17 
BNL:RHIC 200 
CERN-LHC 6000 

0.8 
2.5 
5.2 
9.0 

pared to Pb-p then a and thus e would even be higher. By varying A, energy 
densities in the range from 0.5 to nearly 10GeV/fm 3 can be covered by the 
aforementioned accelerators without any jumps or gaps as can be seen in Fig. 6. 
Thus the existing and planned facilities complement each other very well. Since 
the critical energy density of the phase transition is expected to be at about 
1 GeV/fm 3 we conclude that the energy densities for a quark-gluon plasma can 
be attained in heavy ion collisions. To study the behaviour of bulk matter  in 

10 

8 

6 

,g 4 

LHC' 

RHIC 

SPS / 

__A_G_S . . . .  _~_  . . . . . . .  ~ . . . . . . . . . . . . . . .  

I I L I 

lO lO 2 lO 3 lO 4. 
[GeV] 

Fig. 6. The estimated energy densities for AGS, SPS, RHIC and LHC as function of 
the incident energies. 
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QCD, we need large systems; this is even more the case when we look for critical 
behaviour,  since divergences or discontinuities become pronounced only in the 
large volume limit. The  initial interaction volumes in A - A  and p-p collisions are 
related by 

VoAA/v~ p ~_ ( R A / R p )  2 "" 2A 2/3 . (15) 

This means tha t  in a P b - P b  collision the interaction volume is abou t  75 t imes 
tha t  of p-p. But  if the sys tem has a sufficiently high initial density, it can expand 
considerably and still remain deconfinemed. The volume at  freeze-out can be 
determined by requiring tha t  at this point the mean free pa th  A of a hadron in 
the sys tem should surpass the dimension of the system, i.e., the hadron  "gets  
through" without  interacting. A can be related to the particle density n and the 
interaction cross section a via 

1/A = n a .  (16) 

From 
= (n~) -1 = a + ,  (17) 

we get with isentropic expansion and a -~ a , ,  -~ 20 mb for the freeze-out of 
pions 

R~ _~ 0.7. (dN/dy)ZA/~ fm ~_ 0.7. A°'55[lnv/s /2mp] 1/2 fm (18) 

where we have used eqs.(12) and (13) and again a value of 1.1 for a.  This  shows 
tha t  increasing A or v ~  leads to higher e0, resulting in more  expansion and 
hence a larger freeze-out radius - if the initial s ta te  indeed consisted of dense 
mat ter .  The  freeze-out radius can be measured via hadron in ter ferometry  [8]. 
There  information about  the size of a source emit t ing hadrons can be deduced 
from the fact tha t  identical  bosons/fermions a t t r ac t / r epu l se  each other. Figure 7 
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Fig. 7. The freeze-out radius as a function of  the multiplicity. 
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shows that  indeed the freeze-out radius grows with the multiplicity, i.e. there is 
expansion in the system. Using eq.(18) we can calculate the expected freeze-out 
volumes for Pb-Pb collisions listed in Table 3 These results foster our hope that  

Table  3. Estimated freeze-out volumes for Pb-Pb collisions a$ various accelerators. 

I I sPs I RHICl LHC I 

? o ' ,  ,. ° 

the systems are sufficiently macroscopic for large A and v ~  to be amenable to 
studies in terms of QCD thermodynamics.  However a caution is necessary. The 
volumes just  referred to are calculated for the freeze-out of pions. But  when the 
pions leave the hot bubble the system is (again) in the hadronic phase. Since we 
are interested in the deconfined phase we should instead determine the volume 
of the system when the transit ion from quark to hadronic mat te r  is performed. 
This is clearly much more involved than the determinat ion of the pion freeze-out. 

Finally we discuss the question of thermalization. The  evolution of the sys- 
tem towards equilibrium is driven by rescattering processes. Thus a necessary 
condition for the equilibration process is tha t  a nucleus-nucleus collision is much 
more than a superposition of nucleon-nucleon collisions. To find some evidence 
for the appearance of a cascade of rescattering processes leading to equilibrium 
we can study the product ion ratios of hadrons and the strangeness evolution [9]. 
In general we expect tha t  higher A and /o r  V~ increase the particle multiplic- 
ities dN/dy which is a hint for more rescattering. The ratio of kaons K + and 
pions r + might serve as an example. In p-p collisions this rat io takes a value of 
0.06 =t= 0.01 in the energy range of 5 _< v ~ < 20 GeV. In contrast,  the ratio for 
thermal  emission is 0.20 - 0.25 at temperatures  between 150 MeV and 250 MeV 
and densities between one and four times nuclear density. Thus thermalizat ion 
leads to an increase of the K + / r  + ratio of about  four t imes the value obtained in 
nucleon-nucleon collisions. Figure 8 shows results from the BNL-E802 collabora- 
tion [10]. We see that  the ratio indeed grows with increasing number of involved 
nucleons and reaches the regime predicted for thermal  emission. This evolution 
towards thermalization can also be observed in many other ratios obtained in the 
S-U experiment at SPS. If there is a one-stage freeze-out of all thermal  hadrons, 
then all production ratios are given in terms of two parameters  T and #B [11]. 
In other words, we can take two measured ratios, such as A / A  and ~ / ~ ,  to 
fix the values of T and #B, and all other ratios are then predicted. Although 
previous analyses had been in accord for all strange baryon and meson ratios 
at T ~- 200MeV [12], #B --~ 300MeV [13], newer and more precise da ta  [14] no 
longer provide a common equilibrium freeze-out point even for strange hadrons. 
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Fig. 8. K+ /~r + ratios vs. tota/number of participants at the AGS (central collisions 
with Au target). 

It therefore seems reasonable to consider when freeze-out will occur. Recalling 
our definition for freeze-out as given above (18), we get sequential freeze-out 
for the various particle species, since their freeze-out radius depends on their 
respective interaction cross section [15]. 

We conclude that  the systems obtained in heavy-ion collisions are hot,  large 
enough and thermalized so that  we can hope to be able to s tudy the propert ies 
of dense strongly interacting matter .  

3 T h e  Q u a r k - H a d r o n  T r a n s i t i o n  

In this section we will study the phase transition from hadronic to quark mat te r  
in greater detail. First  we will discuss the thermodynamics  of hadrons. Let  us 
start  with a hot ideal gas of pions. In the Boltzmann approximation the logari thm 
of the part i t ion function is given by 

l n Z o ( T , Y ) -  V /d3pe_V/--~o+p2/T 

-- VTm2 K2(mo/T)  
2~r 2 

V T  a _ 
= - -~- [1  + o(mo/T)] . (19) 

Of course this is by no means an appropriate description of a system of dense 
hadrons since any kind of interaction is missing. To improve the model we include 
resonances by introducing a mass distribution p(m) in the following way [16]: 

In ZR(T, V) - (2r)  3 

m o  
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o o  

= " (201 

7n,o 

Note that one recovers the ideal pion gas we have started with in the case of 

p ( m )  = - n 0 )  • (21)  

The inclusion of resonances is attained by the ansatz [17] 

p(m) ,., mac bm (22) 

where a and b have to be determined from experimental data. In Hagedorn's 
statistical bootstrap model the partition function turns out to be 

o o  

VT / d m  m2+aebrnK2(rn/T) In ZH (T, V) ,,~ 
N O  

r n 0  

Obviously the partition function diverges for temperatures larger than TH = 1/b. 
While Hagedorn [17] argued that TH is the ultimate temperature of matter, 
Cabibbo and Parisi [18] claimed that it marks the point where the transition to a 
new phase of strongly interacting matter takes place. Anyway it is an interesting 
observation that thermodynamics of hadrons defines its own limit, Of course 
the discussion about this limiting temperature got a new direction when the 
interpretation of hadrons as bound quark states was proposed by Gell-Man and 
Zweig. 

Before discussing the phase transition and the transition temperature in the 
quark bag model we will present simple calculations concerning the second quan- 
tity which characterizes a state of matter, the density. To get insight in the typical 
magnitudes of the density for the three possible phases (cf. Fig. 3) we introduce 
a purely geometric model without any thermal features, the percolation model. 
Suppose putting spheres of volume 17o into a box of volume V. At what density 
are there infinitely many clusters when V is taken to infinity? This question 
known as the percolation problem can be answered by a numerical calculation. 
Its solution is 

n p =  0.34/110 • (24) 

We want to apply this result to hadronic systems with hadrons described by an 
additive quark model [19]. There we can calculate the radii of the constituent 
quarks via the cross sections O'pp and O'Qp for proton-proton and quark-proton 
scattering, respectively: 

apv/aQp = 3 . (25) 
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From the collision geometry we get the obvious relation 

Upp/UQp 2 2 = R /RQ (26) 

where RN ~-- 0.8 fm is the radius of the nucleon and RQ is the radius of the 
consti tuent quark. Comparing the last two equations we find 

RQ = RN/x / '3 .  (27) 

The nucleons percolate at 

nH = 0.34/VN ~-- 0.16fm -3 (28) 

which is about  the same as the density no of nuclear mat ter .  Below nH the 
hadrons form a gas, while above nH they are in the hadronic mat te r  phase. 
Using eq.(27) we find that  the quarks themselves percolate at 

nQ = 0.34/VQ _~ 0.82 fm -3 --~ 5.1 .no (29) 

which gives the critical density for the phase transition from hadronic to quark 
matter .  

Next we want to derive an estimate for the critical t empera ture  exploiting the 
bag model [20]. To keep things as simple as possible we assume tha t  there is only 
one phase transition and we neglect all baryons. We describe hadronic mat te r  by 
an ideal gas of massless pions and quark mat te r  by an ideal quark-gluon plasma. 
In both  cases the part i t ion function i s given by [21] 

7r 2 

In Z(T,  V) = c -~  T 3 V  (30) 

where c denotes the number of degrees of freedom. For pions we have to take 
into account three isospin states, thus 

c .  : 3,  (31) 

whereas for the quark-gluon plasma we get 

cQ = 2 × 8 + 7(3 x 2 x 2 x 2) ---- 37 .  (32) 

The first te rm is given by the number of possible polarizations and colours of 
gluons. The factor in front of the brackets accounts for the different statistics of 
fermions and bosons. Finally for quarks we have three colours, two spin states, 
particles and antiparticles and two light flavours. Calculating the pressure ac- 
cording to eq.(6) we find 

P ,  ~ 3 T4 (33) 

and 
PQ ~ 4T 4 . (34) 
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Fig. 9. Pressure o£ pion gas and quark-gluon plasma, respectively, without bag pres- 
sure. 

From this calculation we would have to conclude that the quark-gluon plasma 
is the stable ground state of our world since a system always chooses the state 
of highest pressure (cf. Fig. 9). Thus our world of daily experience would be a 
metastable bubble only which would decay as soon as a quark-gluon plasma is 
created somewhere in the universe, e.g. in a heavy-ion collision [22]. Fortunately 
one feature is missing in this scenario preventing human civilization from being 
destroyed by its own enthusiasm about doing experiments. To get a more realistic 
picture we have to take into account the difference of pressure between the 
physical vacuum and the (perturbative) QCD vacuum, the bag pressure B. In 
the bag model the energy of a nucleon turns out to be 

E = 3[p I + BV (35) 

where [p[ denotes the quark momentum and V the volume of the three-quark 
system. Due to the uncertainty relation we can relate [p[ with the diameter 2R 
of the system: 

Ip[ - 2 / R .  (36) 

Combining the last two equations we get the nucleonic energy as a function of the 
radius of the three-quark system. We expect that the energy takes its minimal 
value when the true nucleon radius RN is inserted. From 

dE  
d-R = 0 (37) 

we get an estimate for the bag pressure: 

B 1/4 = (3/2~r)l/aR~rl ~_ 210 MeV. (3s) 

Subtraction of B from the pressure of quarks and gluons 

PQ ~ 4T 4 - B (39) 
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yields the diagram shown in Fig. 10. Now the two lines intersect at some critical 
temperature Tc which is given by 

Te ~- 0.72- B 1/4 ~_ 150 MeV. (40) 

Thus even this simple model of two ideal gas phases predicts a quark-hadron 

-B 

P 

T 4 

Fig. 10. Pressures of pion gas and quark-gluon plasma with bag pressure included. 

transition in the expected range as soon as the bag pressure is taken into account. 
According to the model of quarks inside of a bag this transition can be interpreted 
as "bag fusion" [23]. Figure 11 shows the pressures as given in eqs.(33) and (39) 
and the energy densities 

e~/T4= 3P /T  4 

~ 4 

D 

T 4 

Fig. 11. Energy density and pressure as functions of the temperature. 
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e~ ~ T 4 

eQ --~ 12T 4 + B . 

151 

(41) 

(42) 

Obviously the bag pressure becomes less impor tan t  when the t empe ra tu r e  in- 
creases. For T -+ co we recognize the relation 

eQ = 3PQ (43) 

which holds for a quark-gluon p lasma without  any interactions. Finally in Fig. 
12 the interaction measure  A defined as 

A := (e -- 3 P ) / T  4 (44) 

is p lot ted as a function of temperature .  In the ideal pion gas phase A vanishes 
while in the quark-gluon p lasma phase it turns out to be 

A = 4 B I T  4 . (45) 

We conclude tha t  the bag pressure parametr izes  the (non-perturbat ive)  inter- 

A 

m 

T 

Fig. 12. Interaction measure as a funct ion o f  the  temperature .  

action in the quark-gluon p lasma phase. 
To check the model  independence of the results obta ined so far we will present  

now the string model  which also serves for the description of the quark s t ructure  
of hadrons.  There  e.g. a meson consists of two massless point-like charges a t  
distance 2r which are connected by a str ing of tension a.  The  energy of the  
sys tem is 

2c 
E = 21p I + 2 a r  ~_ - -  + 2 a t  (46) 

r 
where we have used the uncertainty principle again and thus c is of the order of 
1. The  energy has to be minimized with respect  to the distance. This  yields 

M H  = 4 v f ~  (47) 
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for the hadron mass and 
R .  = (48) 

for the intrinsic size of the hadron. Now we consider a gas of such hadrons with 
interactions occurring only pairwise [24]. At low densities we get an ideal hadron 
gas. At high densities however the distance between the hadrons becomes com- 
parable to the hadron size and thus the probabili ty for bond rearrangement  
should increase (cf. Fig. 13). The occurrence of such "flip-flops" [25] enlarges 
the number of degrees of freedom since at high densities any charge can move 
anywhere via this flip-flop mechanism whereas at low densities all the charges 
are bound pairwise. Thus even for a string tension which is independent of tem- 
perature and density we get a two-phase s tructure of mat ter .  In addit ion we 
get more degrees of freedom if we allow for different spin, colour and flavour 
states. The number of these intrinsic degrees of freedom is denoted by ns. Wi th  

/ 

\ 

Fig. 13. Quark strings at low and high densities and the flip-flop mechanism. 

these ingredients we are able to formulate the part i t ion function and calculate 
thermodynamic  quantities [25]. They are plotted as a function of t empera ture  
in Fig. 14. Energy and pressure are normalized to their Stefan-Boltzmann limits 
esB or PSB, respectively. The tempera ture  is normalized to the string tension a. 
We see that  we get a phase transition even for a constant,  i.e. t empera ture  inde- 
pendent,  value of a parametrizing the non-perturbat ive quark-quark interaction. 
The nature of the phase transition depends on the number of intrinsic degrees 
of freedom ns. Figure 15 shows the latent heat, i.e. the gap in the energy density 
at the critical temperature ,  as a function of ns. For sufficiently large values of 
n8 the transit ion is of first order. Finally we turn  to statistical QCD to obtain 
the critical behaviour and the phase structure from the fundamental  theory  of 
strongly interacting mat te r  [26]. The equations (3)-(5) given in the first section 
consti tute the complete basis of statistical QCD. We are left "only" with the 
question of how to carry out  the calculation of the par t i t ion function eq.(4). 
So far, the computer  simulation of the lattice formulation of QCD [2] is the  
only generally viable method for this, applicable in part icular  also in the critical 
region, where per turbat ive methods break down. Latt ice QCD is obtained in 
three steps. First, we replace the space-time continuum T----iXo, X in eq.(5) by 
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Fig .  14. Energy density and pressure as functions of  the temperature for n8 = 32 in 
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F i g .  15. Latent  heat  as a function of  the number of intrinsic degrees of freedom ns in 
the string model. 

a l a t t i c e  of  N r  x N~ 3 d i sc re te  po in t s ,  w i th  {T = n.~a; xi = nlaa,  n r  = 1, .., N r ,  
ni~ = 1, .., N~,  i = 1, 2, 3} a n d  an  i so t rop ic  l a t t i c e  spac ing  a; hence  T = 1/(N~-a), 
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V = (Naa) a. Next, the integrations over quark and antiquaxk fields are carried 
out, which is possible since they enter the path integral in the form exp(-d/QF¢); 
this leads to a factor (det QF) in the remaining integral over the gluon fields A 
[27]. In the third step, these integrations are changed to the (compact) variables 
U = exp(ixA), where U denotes a matrix of the SU(3) colour gauge group of 
QCD; such variables U are associated with links between neighboring points on 
the lattice. After these steps, the partition function (4) has the structure 

Z(T, V) = / I I  dUe -s(u) (49) 

links 

of a "generalized spin problem", something like an Ising model partition function, 
with SU(3) matrices U instead of spins associated with links instead of with 
lattice sites. The QCD action 

consists of the gluon part 

and the quark part 

s ( u )  = s a ( u )  + s (u) 

s G ( u )  ~ (1 - u u u u )  

(50) 

(51) 

s F ( u )  ~ log(det  • (52) 

The product of four "spins" U on a closed loop built of four links ("plaquette") 
in the gluon action assures local gauge invariance [28], which an Ising like ac- 
tion with a product of only two links does not have. This completes the lattice 
formulation. The results which we want to obtain from it are supposed to hold 
in the continuum limit, in which the number of lattice points becomes infinite 
while the lattice spacing simultaneously goes to zero, keeping T and V constant 
(for a survey about methods and results concerning the simulation of strongly 
interacting matter on the lattice, see [29]). 

Now we want to study the critical behaviour arising in statistical QCD. Since 
phase transitions are in statistical physics quite generally associated with changes 
in symmetry, we look for the symmetries of the QCD Lagrangian ~ or of the 
QCD action S(U) in eq.(50). 

Consider the limit of very heavy quarks: for mf -+ co, SF --+ 0, and we get 
thermodynamics of Yang-Mills theory. This pure gluon system already contains 
many of the crucial features of QCD, quite in contrast to QED, where the pure 
photon system forms an ideal boson gas. The reason for the difference is the 
term gA,A~ in eq.(3), which allows gluons, unlike photons, to interact directly, 
without intermediate fermions. 

If we carry out the "spin flip" 

U(no, n) --+ U'(no, n) = zV(no, n) for all n at fixed no, (53) 

where z = exp(irr/N), r = 0, . . ,N - 1, is an element of the center ZN of 
the SU(N) gauge group, then this leaves the action So(U) invariant. Such an 
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operation is just the analog of flipping all spins si -+ - s i  in the Ising model, 
which leaves the Ising action invariant. However, the "generalized spin" 

N~ 
L(U) - H U(no,n) (54) 

no~l 

is "flipped" by this operation: L(U') = zL(U). Its average, 

f H dU L(U) e -s(v) , (55) (L> 
J 

links 

therefore measures a possible spontaneous breaking of the ZN symmetry of the 
state of matter in which the system is, just as the average spin (s) in the Ising 
model indicates if the Ising system is in an ordered state with spontaneous 
magnetization or in a disordered state with (s) = 0. 

The transition from unbroken to broken ZN symmetry corresponds in fact 
to deconfinement. The order parameter (L) (Polyakov loop) can be related to 
the potential V(r) between static (infinitely heavy) quark and antiquark in the 
limit of infinite separation, 

(L) ~ l i m e  - V ( r ) / T  . (56) 
r - - -+c¢  

For a confined state, V(r) diverges for r --+ co, so that (L) = 0; therefore 
ZN symmetry signals confinement. In a deconfined state, V(r) remains finite 
as r -+ co, since colour screening cuts out the diverging (and hence confining) 
long distance part of the potential; thus the spontaneous breaking of the ZN 
symmetry indicates deconfinement. Therefore the "generalized spin" (L) con- 
stitutes the theoretical probe for confinement or deconfinement. As noted, this 
is strictly true only in the limit of infinite quark masses, i.e. in pure SU(N) 
gauge theory. For finite quark mass, thermal pair production leads to string 
breaking and hence to finite (L) for all T ~ 0. This is quite similar to the ac- 
tual insulator-conductor transition, where thermal ionization also prevents the 
conductivity from vanishing in the insulator phase for T ~ 0. In both cases, 
however, the order parameter remains exponentially small in the "symmetric" 
phase: (L) ~ exp(--mh/T), with mh ~ mp as typical hadron mass, corresponds 
to the conductivity a ,,~ exp ( -AE/T) ,  where AE denotes the ionization energy. 

Figure 16 shows some lattice calculations of the Polyakov loop as a function 
of temperature 4 for different values of N~ [30]. Obviously (L) rises with temper- 
ature. With increasing N~ the shift from low to high values of (L) becomes more 
pronounced. Indeed the comparison with spin systems is not only stressed for 
didactical purposes. As shown in [31] the critical behaviour of a SU(N) gauge 
theory in d + l  dimensions is the same as that of a ZN spin system in d dimen- 
sions, since both are in the same universality class. Thus we have to compare 

4 In SU(N) lattice gauge theory 2N/g 2 is a dimensionless quantity which measures 
the temperature. 
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Fig. 16. Polyakov  loop for a SU(2) gauge theory  as a funct ion of the coupling cons tant  
for different numbers  o f  latt ice points.  

e.g. a finite tempera ture  SU(2) gauge theory in 3 + 1 dimensions with the Ising 
model in 3 dimensions. This s tatement  is in full agreement with lattice calcula- 
tions as can be read off from Table 4. where the critical exponents a,  ;3, 7 and 
u are defined through the behaviour of "generalized spin" (L), susceptibility X, 
correlation length ~ and specific heat C v  near the critical t empera ture  Tc like 5 

(L) ~ (T - To) ~ (57) 

X " I T - To] -'~ (58) 

,-. IT  - Tel -~" (59) 

C v  ", IT  - Tel -'~ • (60) 

Using the theory of finite size scaling [30] one can extract  some information 
about  critical exponents from the values of (L) obtained for different values of 

No. Plot t ing ( L ) N ~ / ~  against xiV~/~ the result is expected to  be independent  

5 Of course the first equation holds for T > Tc only, since (L) vanishes in the symmetric 
phase. 
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Table  4. Comparison between critical exponents in 3+l-dimensional SU(2) gauge 
theory and in the 3-dimensional Ising model. 

SU(2) 3d Ising 
/~/v 0.545(30) 0.518(7) 
T/v ]1.931(15) 1.970(11) 
(a - -  1)/v -1.36(4) -1.41(?) 
iv 0.65(4) 0.6289(8) 

SU(3) 3d 1st order 
7/v 3.02(14) 3 
v 0.339(13) 0.33 

of N~ for large enough values of N~. There  the tempera ture  is rescaled to 

T - Tc,o~ 
- ( 6 1 )  

Tc,oo 

where Tc,oo is the critical tempera ture  in the continuum limit. The  critical expo- 
nents are taken from the Ising model. Figure 17 shows that  lattice results agree 
very well with this expectation. 
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Fig. 17. The N~ independence of the rescaled Polyakov loop as a function of the 
rescaled temperature. 
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We now turn to the already mentioned shift in mass of the constituents 
in connection with deconfinement and consider the Lagrangian in the limit of 
vanishing quark mass, mf  = 0. The four-spinor fields for quarks then decompose 

into a direct sum of a left-handed and a right-handed two-spinor, ¢(4) __+ ¢(L 2) 

¢(~). The chiral "rotation" between these, 

¢ - ,  ¢ '  = (62) 

leaves the m/  = 0 Lagrangian invariant, since ¢ ~ u ¢ '  = ¢~/~¢" However, the 
mass term in the original rnf ~ 0 Lagrangian would not remain invariant, since 
¢ ' ¢ '  -- Ce2i~xs¢ ~ ¢¢.  Hence X - (¢¢)  measures if the system is in a chi- 
rally symmetric state or not. H X ~ 0, chiral symmetry is spontaneously broken, 
quarks have acquired a non-vanishing effective mass. For X -- 0, chiral symme- 
try is restored and the constituents of the system are quarks with a vanishing 
effective mass, i.e., the current quarks of the massless Lagrangian. In the real 
world, the quarks in the Lagrangian cannot be massless, since the pion mass 
m~ ~ m 2 is not zero, so that we have approximate chiral symmetry only. In [32] 
it was argued that a system with chiral SUL(2) x SUR(2) symmetry is in the 
same universality class as the 0(4) Heisenberg model, i.e. both show the same 
critical behaviour. 

Statistical QCD thus leads to two critical phenomena, deconfinement and 
chiral symmetry restoration. Deconfinement is associated to a global Z3 sym- 
metry of the Lagrangian for m f  --+ oo, with (L) as order parameter; the chiral 
symmetry of the Lagrangian for m f  --+ 0 is measured for a given state of the 
system by the order parameter X. Although in the real world both of these sym- 
metries are only approximate, we nevertheless believe that their remnant effects 
will show up in the transition from low to high density behaviour of strongly 
interacting matter. 

So the basic quantities to be studied in statistical QCD are the deconfine- 
ment order parameter (L), the chiral symmetry order parameter X, the energy 
density e, the pressure P,  and thermodynamic quantities derived from these, 
such as entropy, specific heat, and others. The actual calculation of these "ob- 
servables" is highly non-trivial, since we are studying a relativistic field theory 
for an interacting system near a critical point, where perturbative methods are 
not applicable. As already mentioned, the only viable evaluation method in this 
region is the computer simulation [3] of the lattice formulation of the problem 
[2]: one creates on a sufficiently large and fast computer a "world according to 
QCD" and then "measures" in this world the quantities of interest; for a recent 
review, see [33]. One draw-back of this method is that it can be applied up to now 
only to systems of zero over-all baryon number density, i.e., only to hot matter 
with n B :  O, not to dense matter at T = 0; another is that its precision is limited 
by computer size and speed. Nevertheless, it provides us with the unique chance 
to calculate the critical behaviour directly from the underlying fundamental the- 
ory, and the mentioned shortcomings will hopefully be removed or reduced in 
the future. The main results from computer simulation of lattice QCD at finite 
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temperature  are summarized in Figs. 18 and 19, which where obtained in recent 
calculations for two light (staggered) quark species on 83 × 4 and 163 × 4 lattices 
[34]. In Fig. 18, we see abrupt  changes in the deconfinement measure (L) and the 
chiral measure X at the same tempera ture  T -- Tc -~ 150 MeV; hence for n B =  0, 
the two critical phenomena coincide. We also note tha t  neither order parameter  
is ever really zero; for ILl this is due to finite lattice size and finite quark mass, 
for X due to the non-zero quark mass. In spite of this, both  quantities show clear 
transition signals and thus allow the definition of a critical t empera tu re  To. In 
Fig. 19, we see that  at this temperature,  the dimensionless energy density e / T  4 
increases abrupt ly  from a value near tha t  of an ideal pion gas (_"~ 1) to one near 
tha t  of an ideal quark-gluon plasma (_'-~ 20). This increase in the energy density 
Ae represents something like the "latent  heat of deconfinement". 

We should note here that  the value of critical t empera ture  in physical units 
(To "~ 150 MeV) is obtained by calculating T~ in units of the p-mass and then 
using the experimental  value of this mass. 

We also observe that  the pressure grows with tempera ture  at a much slower 
rate, and the ideal gas relation e -- 3P  appears to become fulfilled only for 
T _> 2T~. Hence in the region T~ < T < 2T~, there are definite interact ion 
effects in the plasma. Guided by the picture of quasi-particles propagat ing in a 
refractive medium one can parametrize the refractive properties of the medium 
in terms of a temperature-dependent  effective mass M(T) of the excitations [35]. 
The part i t ion function e.g. of an ideal gas of quasi-gluons of mass M(T) is given 
by 

C O  

- In Z(T, V) = (3V/ r  2) /dk k 2 ln[1 - e x p ( - v / M ( T )  2 + k2/T)] . (63) 

0 

For given M(T) one can extract  the relations for energy density and pressure 
from this formula. Just the other way round we can obtain the t empera tu re  
dependence of the mass M using lattice results for e and P.  The outcome is 
shown in Fig. 20 for pure SU(2) gauge theory. At high tempera tures  the result 
agrees with perturbat ive calculations. The behaviour of M(T) near the critical 
point shows a singularity corresponding to the second order phase transition; 
the resulting critical exponent is in accord with that  obtained by universality 
arguments from the corresponding Ising model. Let us briefly summarize the 
questions which are up to now not completely clarified by lattice calculations: 

1. The first question concerns the order of the phase transition: Is it really of 
first order in the pure glue state (like the Z3 spin model),  of second order in 
the case of two flavours and again of first order for more than  two flavours? It 
might appear  that  finite current quark masses wash out the phase transit ion. 

2. Wha t  happens in the vicinity of the phase transit ion where the quark-gluon 
plasma does not behave like an ideal gas of massless particles? It  might  
be tha t  the interactions are such that  the relevant degrees of freedom are 
partons propagating in a refractive medium and thus carrying an effective 
mass which depends on temperature.  
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3. Finally a serious problem is the introduction of non-vanishing baryon number 
nB. Calculating average values like 

(A) - f dx  A(x)  e-S(~) 
fdx  e-S(x) (64) 

via Monte-Carlo methods one needs a positive action: S(x)  > O. For nB ~ 0 
however this is no longer the case. 

4 P r o b i n g  t h e  Q u a r k - G l u o n  P l a s m a  

Suppose now that we are able to create a quark-gluon plasma at the early stages 
of heavy-ion collisions. Then we have to find some observable quantities providing 
us with information about this dense system of deconfined quarks and gluons. 
This requires probes which exist at early times,which are hard enough to resolve 
short scales and which can distinguish between confined and deconfined quarks 
and gluons. Since thermal evolution destroys any memory of early stages of the 
system the probes we are looking for must not be in equilibrium with the later 
stages of matter, e.g. at pion freeze-out. The desired probes might decouple from 
the system before it reaches thermal equilibrium carrying information about the 
very early stages of its evolution; or the probes might be in thermal equilibrium 
with the deconfined phase without being influenced any more by rehadronization 
and the subsequent evolution in the hadronic phase. The latter are required for 
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studying properties of the quark-gluon plasma. Thus we are interested in internal 
probes emitted by early states of matter and in external probes put into early 
matter. 

Particles produced by electromagnetic interactions like thermal photons and 
dileptons might serve as internal probes. They decouple automatically from mat- 
ter in later stages of the evolution automatically. To assure that they come from 
early matter they must be hard; however they must not be too hard, otherwise 
they do not originate from matter at all but from primary or secondary colli- 
sions, i.e. from the pre-equilibrium state. Thus we need a window between very 
hard and soft components in the photon and dilepton spectra. Of course it is 
not so easy to find this window and disentangle all the effects which contribute 
to the observed spectra (see e.g. [36]). Figure 21 illustrates schematically an ide- 
alized form of the expected dilepton spectrum [7]. Since dileptons are emitted 
during the entire evolution of the system, i.e. at different temperatures, only the 
high mass region will be dominated by the smallest coefficient of the mass in 
the exponential spectrum exp(-M/T), i.e. by the temperature To of the early 
matter state. This means that at lower masses, the primordial part will be buried 
under dileptons from later stages of the evolution, in particular also under the 
tails of p, w and ¢ decays. For sufficiently high masses, however, the pre-thermal 
Drell-Yan production will dominate, since it falls only as a power in the mass, in 
contrast to the exponential thermal spectrum. The Drell-Yan continuum is due 
to electromagnetic quark-antiquark annihilation into massive virtual photons, 
which decay into lepton pairs. 

External probes are hadronic particles which are produced in primary colli- 
sions before matter is formed. Since they should retain memory of the deconfined 
phase they must not be in equilibrium with hadrons of the late states of matter. 
Of course these particles should behave differently when propagating through 
a confined or deconfined medium. Examples for hard probes are heavy quark 
pairs, e.g. charmonium or bottonium, and hard quarks and gluons observable 
as hard jets. External probes are not part of matter, i.e. they are not created 
in a thermal system, since they are suppressed by their masses or energies. For 
a given temperature of 400 MeV the charmonium state J/¢ is suppressed by 
exp(-M¢/T) ~_ 10 -4, the bottonium state T by exp(-Mr/T) ~- 10 -11 and 
hard jets by exp(-pj~t/T) -~ 10 -11, where a transversal momentum of 10 GeV 
is assumed for a hard jet. Furthermore the behaviour of these probes in the 
vacuum should be well understood since we have to disentangle medium and 
vacuum properties. In the aforementioned cases the vacuum behaviour is given 
by perturbative QCD and in addition by universal non-perturbative phenomena 
which can be described by quark and gluon structure functions. For external 
probes produced in nuclear collisions one has to take into account the effects of 
the initial state, e.g. shadowing, and of the pre-equilibrium stage. The mentioned 
heavy quarkonium states mentioned before decay into # + # -  pairs and therefore 
also appear in the dilepton spectrum as shown in Fig. 21. 

Besides these probes it is also useful to have a reference probe which remains 
unaffected by the medium produced in the collision. This enables us to com- 



Quark Matter and High Energy Nuclear Collisions 163 

s- 
't3 

Q°W 

~.OV mass 
tt~ermat 

High miss thermal. 
/ t" Iq'/'i'o 

',N 

Drlt|-Yan 

M 

Fig. 21. The ideal dilepton spectrum. 

pare the ratio of external and reference probe for various experiments, especially 
those where we expect the creation of a quark-gluon plasma with those where the 
system never leaves the hadronic phase. Examples for reference probes are hard 
direct photons, high mass Drell-Yan dileptons and mesons with open charm or 
beauty. These particles might also serve as a test for the pre-equilibrium state. 
They are influenced by initial state effects like nuclear shadowing or antishad- 
owing and initial state patton scattering. 

In the following we will concentrate on quarkonium as a candidate for indi- 
cating the appearance of a quark-gluon plasma [1]. The J/~b is a bound state of 
the heavy "charmed" quark c and its antiquark g; the quark mass me is about 
1.5 GeV. It decays into a dilepton pair ~+/~- which can be detected. Such quarks 
are not present in the colliding nucleons, and their creation in any thermal system 
is extremely unlikely, because of their large mass. For the T meson, consisting 
of a bottom quark b and its antiquark b, with mb --~ 3 GeV, this is even more 
unlikely. Heavy quark-antiquark pairs (c~, bb) are therefore produced at a very 
early stage of the collision, by hard, pre-thermal interactions of quarks and glu- 
ons present in the collision partners. Thus charmonium production in hadronic 
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collisions occurs in two stages [11]. First we have a hard process, the fusion of 
two gluons to form a coloured c5 (bb) pair, and then subsequently soft colour 
neutralization and resonance binding (cf. Fig. 22). If nuclear collisions lead to 

! 

', gluon 
fusion 

colour resonance 
neutralization binding 

J/~[/ :/~t- 

dilepton 

decay 

Fig. 22. The formation process of a J/¢ and its decay into a dilepton. 

the formation of a deconfined medium, then the second step is inhibited so tha t  
c and ~ (or b and b) just fly apart. At hadronization, the presence of additional 
thermal c or b quarks is strongly suppressed because of their large masses, as 
noted already. Hence at this stage, a heavy quark cannot find another heavy 
partner; it instead has to combine with a common light quark to form a meson 
with open charm or open beauty, such as D (cfi, etc.) or B (bfi, etc.). However, 
the overall Drell-Yan rate is essentially unaffected by the presence of a plasma. 
In the dilepton spectrum from high energy nuclear collisions, we thus expect a 
suppression of the J /¢  and T signals relative to the Drell-Yan continuum, if 
there was quark-gluon plasma formation. Obviously the melting of the heavy 
quarkonium states just described, is due to screening of the confining potential 
according to eq.(2). By solving the SchrSdinger equation with the potential Vscr 
for a heavy quark pair of mass M we can determine the screening radius #-1 
for which binding is dissolved [1]. The screening radius can be related to tem- 

Table 5. Energy densities for me/ring of heavy quarkonium states 

State J/¢ Xc 42' T Xb T '  
M [GeV] 3.1 3.513.7 9.6 9.9 10.0 
ed [GeV/fm 3] 1.9 1.0 1.0 47.1 1.0 1.6 

perature and energy density via calculations within lat t ice QCD. This yields the 
respective energy density ed at which a charmonium or bottonium state melts. 
The results are given in Table 5 for various bound states of c5 and bb. Thus 
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all mentioned quarkonium states except the T could melt at CERN-SPS ener- 
gies. In the experiment NA38 [37], masses and momenta of the outgoing muon 
pairs are measured; in addition, the associated (neutral) energy ET emitted in 
the plane orthogonal to the beam axis is determined by calorimeters. Since this 
transverse energy provides a measure for the associated hadron multiplicity and 
hence for the energy density e0, high ET means central collisions with many 
hadronic secondaries, low ET means peripheral events of lower multiplicity. In 
Fig. 23 the muon pair spectra from oxygen-uranium collisions for ET < 33 GeV 
and ET > 82 GeV are superimposed by matching the fitted Drell-Yan continua. 
We note that at high ET and thus at high e0, the J / ¢  signal has become con- 
siderably weaker; it has decreased by the shaded area. Any evidence for the ¢ '  
has disappeared at high ET. Indeed the ~b ' is more strongly suppressed than 
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Fig. 23. The dilepton spectrum from oxygen-uranium collisions at low and high ET, 
with matched continua. The shaded area indicates the observed J /¢  and ¢' suppres- 
sion. 

the J / ¢  with growing e0, as can be seen in Fig. 24 [38]. 
Another interesting feature of J / ¢  suppression can be seen in Fig. 25. We 

observe that the suppression depends on the transverse momentum PT of the 
J/C; it vanishes for large PT. To understand the aforementioned effects observed 
in A-B collisions we go one step back and study hadron-nucleus collisions first 
[11]. Analysing the data from ~r±-A and p-A collisions at 17 < x/~ _< 40 GeV 
with respect to J /C,  ¢' and T production it is found [39] that in such collisions 
charmonium and bottonium states are suppressed with increasing A, in com- 
parison to the corresponding production on hadrons (cf. Fig. 26). In contrast 
there is no suppression of the Drell-Yan continuum. Figure 27 shows that  the 
suppression also increases with increasing xF.  It is worth mentioning that all 
charmonium states are measured for xF ~ 0.1, i.e. they move fast in the tar- 
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get system. This implies that the produced cg pairs leave the nucleus as a small 
colour octet state and reach physical resonance size only far outside the target; in 
A - B  collisions, on the other hand, an interaction between resonances which are 
fully formed and partially stopped strongly interacting matter can take place. A 
specific consequence of the pre-hadronic character of the c~ in h-A collisions is 
that the suppression of J / ¢  and ¢' should be the same which is in fact observed 
(cf. Figs. 26 and 27). Thus the relevant mechanism for the suppression in h-A 
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Fig. 26. The ratios of heavy nucleus to deuterium integrated yields/or the J/V) and 
¢' resonances and the Drell-Yan continuum. The insert shows the raw (no acceptance 
correction) dimuon invariant mass spectrum. 

collisions is not physical absorption of charmonium states but a combination 
of colour interactions [40] and nuclear modifications of the structure functions 
(gluon shadowing) [41]. 

We now return to the suppression in nucleus-nucleus collisions. As already 
noted, the accessible kinematic region (0 < xF < 0.2) allows the formation of 
physical resonances in the medium. The observed suppression could thus be due 
to some type of absorption in confined matter at very high density [42] as well 
as to deconfinement, and we have to find a way to distinguish between the two 
mechanisms. But whatever origin of the suppression, the existence of physical 
resonance states predicts that the ¢' ,  because of its larger geometric size, will 
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Fig. 27. J / ¢  and ¢' production in p-W vs. p-p collisions as a function of XF. 

suffer a stronger suppression than the J / ¢ .  Specifically, this means tha t  the 
ratio ¢ ' / ( J / ¢ )  production in A - B  collisions should be smaller than  tha t  found 
in h-A collisions, and that  it should decrease with increasing energy density (or 
equivalently, with ET). This was indeed observed, as mentioned previously (cf. 
Fig. 24). We therefore conclude that  the A-dependent charmonium suppression in 
h-A collisions and the ET-dependent  suppression in A - B  collisions have different 
origins. 

Next we will calculate the survival probabili ty of a J / ¢  in a deconfined 
medium obtained in A - B  collisions. There a charmonium state x survives if the 
energy density e0 of the medium is less than the value e~ needed to dissolve 
it. In the interaction region with a hot center and a cool surface the survival 
probability is given by 

S~ = 1 - V?,ot/V (65) 

where Vh~ot is that  part  of the interaction volume V in which e0 _> e~. The  profile 
of the initial energy density is assumed to be proport ional  to the density of the 
colliding nucleons 

e0(r)  = eo [1 - ( r / R A )  2] 2/3 (66) 

With these ingredients the survival probabil i ty becomes 

= - O(eo - e~) . (67) 
\ e 0 /  

Please note tha t  there are no free parameters  in this calculation. For the analysis 
of data  it is important  to take into account the J / ¢ ' s  which are produced via 
the decay of the excited Xe state. The  observed J/~b's are about  70% directly 
produced and about  30% due to the decay Xc --+ J / ¢  + 7. Since the energy 
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density needed to dissolve the Xc differs from the one for J / ¢  we get for the 
observable survival probabili ty 

s~/~(~o)  = 0.7 o ( ~  - ~o) + O(~o - ~) 

+ o.3 [0(~ ~o) + ( ~  '/4 ] - o(~0 - ~)  . (68) 
\ eo  / 

Figure 28 shows that  the result agrees very well with the data.  In spite of this 
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Fig. 28. J/%b suppression as function of the initial energy density eo for deconfinement. 

good agreement we have to answer the question whether an absorption process in 
a confined medium can match the da ta  similarily well. Thus we have to compare 
quarkonium interactions in confined and deconfined mat te r  [43]. 

For mat ter  in a confined state, the constituents will be hadrons; for simplicity, 
consider an ideal gas of pions [26]. Their  momentum distribution will be thermal,  
i.e., for temperatures  not too low it will be given by e x p ( - E , ~ / T )  "~ e x p ( - p ~ / T ) .  
Hence the average momentum of a pion in this medium is (P~/ = 3T. The 
distribution of quarks and gluons within a pion is known from structure  function 
studies; the gluon density is g(x) ~_ 0.5 (1 - x) 3 for large x = pg/p~. As a 
consequence, the average momentum of a gluon in confined mat te r  is given by 

l ( p  3 (69) <Pg>conf : ~ ) = g T .  
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Hence in a medium of temperature  T _ 0.2 GeV, the average gluon momentum 
is around 0.12 GeV. 

In contrast,  the distribution of gluons in a deconfined medium is directly 
thermal,  i.e., exp(-pg/T) ,  so that  

<P9>deconf-~-- 3T.  (70) 

Hence the average momentum of a gluon in a deconfined medium is five times 
larger than in a confined medium; for T -- 0.2 GeV, it becomes 0.6 GeV. We 
thus have to find a way to look for such a hardening of the gluon distribution in 
deconfined matter. 

Indeed the J/¢ provides an ideal probe for this. It is very small, with a 
radius re ~ 0.2fm<< A - I  - QCD, so that its interactions with conventional light 
quark hadrons probe short distance features, the parton infrastructure, of these 
hadrons. It is very strongly bound, with a binding energy e¢ ~-- 0.65 GeV>> 
AQCD; hence it can be broken up only by hard partons. Since it shares no quarks 
or antiquarks with pions or nucleons, the dominant perturbative interaction for 
such a break-up is the exchange of a hard gluon. Thus if we put a ,.7/¢ into 
matter of temperature T = 0.2 GeV, then 

if the matter is confined, then (Pg)conf - 0.12 GeV, which is much too soft to 
resolve the J/¢ as a bound c~ state and much less than the binding energy 
e¢, so that the J/¢ survives; 

- if the matter is deconfined, then (Pg)deconf ~-- 0.6 GeV, which is, assuming 
some spread in momentum, hard enough to resolve the J/¢ and to break 
the binding, so that the J/¢ will disappear. 

Our arguments thus provide a dynamical basis for J/¢ suppression by colour 
screening, and they indicate in fact tha t  J / ¢  suppression in dense mat te r  will 
occur if and only if there is deconfinement. 

To put  these arguments on a firm theoretical basis, we need the cross section 
for the inelastic interaction of a J / ¢  with a light hadron h, aCh, from which we 
can determine whether a J / ¢  can be broken up on its passage through hadronic 
matter .  Because of the small radius and large binding energy of the J /¢ ,  aCh can 
be calculated by means of a short-distance analysis of QCD. The crucial feature 
for this calculation is the fact tha t  heavy and tightly bound quarkonium states 
can be broken up by scattering on usual light hadrons only through the exchange 
of hard gluons. The momentum distribution of gluons within such a light hadron 
incident on a J/C, g(x), with x = Pg/Ph, is a universal non-perturbat ive input,  
determined e.g. from parton counting rules or from deep inelastic processes. It 
has for large x in general the form g(x) ~- (1 - x) ~, with k ~ 3 for mesons, k _ 4 
for nucleons. The resulting (J/¢)-h cross section then becomes [43] 

aCh(S) ~-- 3mb(1 - )~o/Eh)  k+5/2 , (71) 

with 
Eh = (m2h + p2)1/2 and A0 = mh + ~¢ • (72) 
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For low collision energies x/~, the cross section is thus determined by the be- 
haviour of the gluon distribution at large x, and this leads to a very slow growth 
from threshold towards the asymptotic  value of 3 mb. The functional form of this 
behaviour is shown in Fig. 29. Only in the limit of large quark mass the quarko- 
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Fig. 29. Energy dependence of the J/C-nucleon cross section. 

nium-hadron cross section can be calculated rigorously in short-distance QCD. 
We thus have to  ask if the charm quark mass is sufficiently large to  apply the re- 
sults of heavy quark theory. For an empirical test, one can use the same approach 
to calculate the cross section for photoproduct ion of open charm, aTh--,ce(s ). The 
result is 

aTh-~ce(S) ~-- 1.2~b(1 - vo/v) k , (73) 

with 

2u ---- s - rn 2 and 2u0 = M~ + 2Momh . (74) 

In Fig. 30 it is seen that  the available data  agree well with the heavy quark theory 
result eq.(73). A similar test is in principle provided by J /¢ -pho toproduc t ion ,  
7 N  --4 J ] ¢  N.  The forward scattering ampli tude of this process will give the 
total  charm photoproduct ion cross " tot section ~r.rN_+ce, provided vector meson dom- 
inance holds and the real part  of the amplitude can be neglected. Near threshold 
presumably neither is true, and so the result of our calculation falls there  below 
the data  (cf. Fig. 31). 
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Fig .  30. Energy dependence of open charm photoproduction. 
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Fig.  31. The total cross section for charm photoproduction, compared to the prediction 
of the short distance QCD analysis, with the real part of the amplitude neglected. 
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To estimate the chance of J / ¢ ' s  surviving in confined hadronic matter of 
higher than standard nuclear density, we consider the survival probability 

S = e - ' ~ z ' ~ ' ~ "  (75) 

where n denotes the density of the medium and L the radius of the bubble. 
The result for pionic matter (Table 6) shows essentially no suppression. The 

Table 6. Survival Probability for J / ¢  in pionic matter at 5 times nuclear matter 
density and a bubble radius of lOfm for various temperatures. 

Is [GeV] 0.210.310.4]0.5 
1.oo11.oo11.oolo.9s 

calculation of the total ( J / ¢ ) h  cross section as given above becomes exact in the 
heavy quark limit. It is interesting, however, to consider also non-perturbative 
mechanisms made possible by the finiteness of the charmed quark mass. Here, 
e.g., the process 

J / ¢  + p ~ D + b (76) 

near threshold might be worth studying. Imagine a J / ¢  which is put "into" a 
p-meson. Apart from perturbative contributions, the amplitude for the reaction 
can acquire a non-perturbative piece, corresponding to the tunneling of the c- 
quark from the charmonium potential well into the potential well of the p-meson. 
The probability for the break-up of the J / ¢  by tunneling can be estimated in a 
(non-relativistic) quantum-mechanical framework. In this case we can calculate 
the tunneling rate via 

R = wP  (77) 

where w denotes the frequency of the J / ¢  hitting the potential well and P the 
tunneling probability. An estimate for w can be obtained by taking the difference 
of J / ¢  and ¢ '  masses 

w = Me, - M¢ _~ 0.7 GeV (78) 

while P is given by 

with the Gamow factor 

P = e -2W (79) 

X2 

W = / d x  X,/2m(V(x) - E)  (80) 

where x2 - xl is the tunneling distance, i.e. between xl and x2 the potential 
energy V(x )  is bigger than the total energy E of the particle with mass m. 
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Replacing V ( x )  - E by the dissociation energy A E  = 2MD -- M e  ~_ 0.7GeV we 
get 

W ~_ ( m c A E ) W 2 R t  (81) 

with the tunneling distance Rt .  For the J / ¢  we have 

n ,  ~ -~ 0.7/AQcD. (82) 

Thus the tunneling rate turns out to be 

R ~ 2.3- 10 -a  fm -1 . (83) 

To get the survival probability for a J / ¢  we need in addition the overlap t ime 
t, i.e. the t ime for J / ¢  and p sharing the same spacial region. Wi th  the typical  
length scale of d = 1/AQcD we get 

t = d/vp "~ AQCD Ep/pp  ~- 4 f m .  (84) 

This yields the survival probability 

St ¢ ~" e -R t  ~_ e -(2"3"10-3)'4 --~ 0.99, (85) 

i.e. the J / ¢  cannot break up non-perturbat ively by tunneling. It  is worth men- 
tioning that  this is due to its large dissociation energy. To illustrate this we 
calculate the respective survival probabili ty for ¢~. There  the dissociation en- 
ergy is 

AIE¢, = 2MD -- M e ,  ~_ 0.05 G e V .  (86) 

Assuming a linear potential  the tunneling distance becomes proport ional  to  the 
dissociation energy (cf. Fig. 32). Thus 
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Fig. 32. Dissociation energy and tunneling distance for J / ¢  and ~b ~. 

¢, ziE¢, 
Rt -~ R¢ zIE¢ ~- 0.05/AQcD . (87) 
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With a frequency of 
we, -~ 0.08 GeV (88) 

the tunneling rate for ¢~ becomes 

Re, ~ 3.5.10 -1 fm -1 (89) 

yielding the survival probability 

0.25, (90) 

i.e. ¢1 can break up by tunneling in contrast to J/¢. 
A direct test of J/¢ absorption in confined matter will in fact soon become 

possible [26]. As mentioned above, the ideal way to study the fate of J/¢'s in 
confined matter is in principle provided by hadron-nucleus collisions, where the 
J/¢ is then observed by measuring its decay products, J/¢ --4 #+#-. In practice, 
however, the muons are identified by passing through an absorber, and for this 
they have to be sufficiently energetic. As a consequence, experiments in which 
a hadron beam is incident on a nuclear target lead to J/¢'s which are very fast 
(XF ~ 0) in the rest frame of the nucleus and hence leave the nuclear medium 
long before ever becoming fully formed physical resonances. Such experiments 
thus mainly study the behaviour of a coloured c~ pair in the medium, and the 
behaviour of this system is quite different from that of a colour-singlet J/¢. To 
test the interaction of the latter in the nuclear medium, we need J/¢'s in the 
momentum range - 1  ~_ xF ~_ :0.3,  and as noted, these lead to dimuons too slow 
to be observable in the usual pA experiments. However, with the advent of the 
Pb-beam at CERN-SPS, it will become possible to study J/C-production from 
a nuclear beam incident on a hydrogen target. Fast J/¢'s in the lab system will 
then be slow in the nuclear rest frame and thus pass through the confined nuclear 
medium as fully formed physical resonances. The short-distance QCD analysis 
presented here predicts essentially no absorption for this passage, in contrast to 
a suppression of 25% or more if the asymptotic break-up cross section is used 
instead of eq.(71). 

According to our QCD-based perturbative as well as non-perturbative calcu- 
lations, we conclude that confined matter is transparent for Jim's while decon- 
fined matter is opaque. Thus J/¢ probes colour confinement and therefore the 
existence of a quark-gluon plasma. 

In closing, we comment briefly on the interpretation of the observed 50% 
J/¢ suppression in O-U and S-U collisions at CERN [37]. At this time, there 
remain at least two open questions which prevent us from concluding that this 
suppression is due to deconfinement. Our present considerations exclude J/¢ 
absorption in confined matter. The temporal sequence of J/¢ formation and 
equilibration in nuclear collision is not yet clear, however, and so energetic pre- 
equilibrium hadrons could have broken up the suppressed J/¢'s, either as fully 
formed resonances or in a nascent state. Such break-up processes can be studied 
theoretically, and it should be possible to determine their effect. Another uncer- 
tainty arises from J/¢ production through Xc decay, which leads to a sizeable 
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fraction of the overall production rate (30 - 40%). Since the X'S are much less 
tightly bound, their break-up into D/)  pairs is easier, and hence much of the 
observed suppression could in fact be X suppression. In p-Li and r±-Li inter- 
actions at 300 GeV beam momentum [44], the production rates of the different 
hidden charm final states (J/C, X1, X2, ¢') were measured, and if this would be 
done also in nuclear collisions, the effect of X suppression could be determined. 
Thus both theorists and experimentalists have some work left to do before the 
relation between the observed J/¢ suppression and colour deconfinement is fully 
clarified. 
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Abstract .  These notes provide an introduction to polarization effects in deep inelastic 
processes in QCD. We emphasize recent work on transverse asymmetries, subdominant 
effects, and the role of polarization in fragmentation and in purely hadronic processes. 
After a review of kinematics and some basic tools of short distance analysis, we study 
the twist, helicity, chirality and transversity dependence of a variety of high energy 
processes sensitive to the quark and gluon substructure of hadrons. 

1 I n t r o d u c t i o n  

In recent years hadron spin physics has emerged as one of the most  dynamic  areas 
of particle physics. During the same period the field has got considerably more  
complicated. In t imes past  only longitudinal asymmetr ies ,  tha t  have simple par-  
ton model interpretations,  a t t rac ted  much attention; only dominant  effects, t ha t  
scale in the Bjorken limit, were experimental ly accessible; and only relatively 
crude experimental  da ta  were available. Now interest has spread to t ransverse  
polarization asymmetries ,  subdominant  effects, polarization effects in f ragmen- 
ta t ion and in purely hadronic processes. The  a im of these lectures is to present  
an introduction to spin dependent effects at  dominant  and subdominant  order 
in deep inelastic processes including deep inelastic scattering of leptons, e+e - 
annihilation, and Drell-Yan processes. The methods can be extended relatively 
straightforwardly to other spin dependent effects in hard processes. 

In a short set of lectures some detail and background must  be sacrificed. 
As for background, I will assume tha t  readers are familiar with the e lementary  
paxton model t rea tment  of highly inelastic processes in the "infinite m o m e n t u m  
frame".  Anyone who is not familiar with basic par ton  model ideas should consult  

* Lectures presented at the workshop "QCD and Hadron Structure" organised by the 
Graduiertenkolleg Erlangen-Regensburg, held on June 9 th- l l th ,  1992 in Kloster 
Banz, Germany 
This work is supported in part by funds provided by National Science Foundation 
(N.S.F.) grant # P H Y  92-18167 and by the U.S. Department of Energy (D.O.E.) 
under contracts #DF-FC02-94ER40818 and #DF-FG02-92ER40702. 
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standard textbook presentations. [1, 2, 3] Although I will have a lot to say 
about the patton model, it may look poorly motivated to someone who has not 
seen the ideas presented in their simplest form first. As for detail, I will mostly 
ignore the complications of QCD radiative corrections, normally included via the 
renormalization group. There are many excellent treatments including books by 
Collins[4], Muta [5] and most recently in a context particularly well suited to 
these lectures, by Roberts. [6] Of course radiative corrections and the momentum 
scale dependence they generate are central to the understanding of QCD. Here 
we will be interested in the classification of scattering amplitudes in terms of 
helicity, chirality, twist, etc. - a classification which is largely (but not entirely) 
independent of radiative corrections. In many cases the soft, In Q2 dependence 
they generate can be regarded as decorations of our primary results. Where 
this is not the case, I will try to warn the reader and refer to the appropriate 
literature. 

The main question to be addressed here is: How can one classify and inter- 
pret the wide variety of spin dependent phenomena expected in hard processes? 
Which phenomena are displayed in which experiments? What are the selection 
rules enforced by the symmetries of QCD? Which phenomena dominate at large- 
Q2, which are suppressed, and what is the physical origin of the suppression? In 
short, the object is to provide the background for both experimental and theo- 
retical analysis of spin effects in hard processes. In contrast, I will resist almost 
entirely the temptation to speculate about the origins of spin effects based on 
models of hadron structure. These notes are not intended to be an introduction 
to the so-called "spin crisis" which grew out of the observation that only a small 
fraction of the nucleon's spin is carried by the spin of quarks. Theorists will not 
find their own or my own favorite explanation of the spin crisis in these lectures. 
That is a subject for another school. 

Certain predictions of perturbative QCD are admired for being very general 
and independent of the difficult details of hadron structure. Examples include the 
cross section for e+e - --~ hadrons, event shapes in e+e - annihilation, the In Q2 
dependence of deep inelastic structure functions, and the Gross-Llewellyn Smith 
and Bjorken Sum Rules. Studies of these processes provide essential tests of 
QCD. These will not be major topics here. I will assume that perturbative QCD 
is correct and use it as a sophisticated probe of the poorly understood dynamics 
of confinement. As we shall see, perturbative QCD is by now so well understood 
that it is possible to "tune" the probe to measure the nucleon expectation values 
of a variety of quark and gluon distributions and correlations within hadrons. 
Probes can be selected for spin, twist and flavor quantum numbers, and can be 
used either to analyze the structure of hadronic targets or reaction fragments. No 
other approach yields such well defined information about hadronic bound states. 
This information may help guide us to a better understanding of confinement 
from first principles. 

Many aspects of these lectures are based on work performed in collabora- 
tion with Xiangdong Ji. The reader who wishes to explore subjects in greater 
depth should look at refs. [7] - [12], as well as other references provided in the 
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text. I would like to thank Xiangdong for the pleasure of this long collabora- 
tion. Thanks are also due to Matthias Burkardt, Gary Goldstein and Aneesh 
Manohar who collaborated on other projects related to this work. In addition 
I have benefited greatly from discussions with Guido Altarelli, Xavier Artru, 
Inn Balitsky, Vladimir Braun, Gerry Bunce, John Collins, Vernon Hughes, Gerd 
Mallot, A1 Mueller, Richard Milner, John Ralston, Phil Ratcliffe, Klans Rith, 
Jacques Softer, and Linda Stuart. 

These lecture notes grew out of talks at schools and conferences in the early 
1990's. They began as a manuscript prepared by Drs. H. Meyer and G. Piller 
from their notes at the 1992 Graduiertenkolleg. I would like to thank them 
for the substantial work they undertook at that time. The present version was 
significantly edited, reformulated and expanded for the 1995 Erice School on the 
Internal Spin Structure of the Nucleon. 

2 K i n e m a t i c s  a n d  O t h e r  G e n e r a l i t i e s  

The organizers of the school asked if I would briefly introduce the kinematic 
and dynamical variables common in the study of deep inelastic processes. So 
before getting down to the business of dynamics here is a short summary - -  the 
cogniscenti will certainly want to skip this section. Others, who may be familiar 
with less streamlined notation might wish at least to look at Eqs. (2.14), (2.15), 
(2.21), and (2.22). I hope students with less background in perturbative QCD 
will find this section useful. 

2.1 Deep Inelastic Scattering 

Basic Variables  Deep inelastic scattering (DIS) is the archetype for hard pro- 
cesses in QCD: a lepton - -  in practice an electron, muon or neutrino - -  with 
high energy scatters oft a target hadron - -  in practice a nucleon or nucleus, or 
perhaps a photon - -  transferring large quantities of both energy and invariant 
squared-four-momentum. For charged leptons the dominant reaction mechanism 
is electromagnetism and one photon exchange is a good approximation. For neu- 
trinos either W ± (charged current) or Z ° (neutral current) exchange may occur. 
The weak interactions of electrons may also be studied either by means of small 
parity violating asymmetries originating in 7 - Z° interference, or by means of 
the charged current reaction e -  --+ re. 

We are primarily interested in experiments performed with polarized targets. 
Neutrino scattering experiments require far too massive targets for polarization 
to be a practical option, so we will ignore them, although W-exchange has been 
observed in e - p  --+ ve + X ,  at HERA,J13] and could be extended to a polarized 
target, at least in principle. Thus we are mainly limited to charged lepton scat- 
tering by one photon exchange. The kinematics is shown in Fig. 1. The initial 
lepton with momentum k and energy E exchanges a photon of momentum q with 
a the target with momentum P. Only the outgoing electron with momentum k ~ 
and energy E ~ is detected. One can define the two invariants 



Spin, Twist and Hadron Structure in Deep Inelastic Processes 181 

k > 

Fig. 1. Kinematics of lepton-hadron scattering in the target rest frame. 

q2 ~ (k - k') 2 -- q~ - q 2 = - 4 E E '  sin2(0/2) --- _Q2 < 0 (2.1) 

v -  P . q  = M ( E -  E') ,  (2.2) 

where the lepton mass has been neglected (and will be neglected henceforth). The  
meaning of the scattering angle 0 is clear from Fig. 1. Unless otherwise noted, 
E,  E ' ,  0 and q0 - E - E '  refer to the target  rest frame. The deep inelastic, or 
Bjorken limit is where Q2 and v both go to infinity with the ratio, x - Q2/2v  
fixed, x is known as the Bjorken (scaling) variable. 

Since the invariant mass of the hadronic final state is larger than  or equal to 
the mass of the target,  (P  + q)2 > M 2, one has 0 < x < 1. It is convenient also 
to measure the energy loss using a dimensionless variable, 

V 

0 <_ y =_ M E  -< 1. (2.3) 

We will find E,  Q2, x, and y to be a useful set of variables. Note that  it is 
overcomplete since xy = Q 2 / 2 M E ,  and note also that  what we define as v 
differs from common usage by a factor of M. The  behavior of cross sections 
at large Q2 is much more transparent  using these variables than  using the set 
(E ,E ' ,O)  favored by experimenters for the reason that  0 ~ 0 as Q2 _+ co at  
fixed x and y. 

C r o s s  S e c t i o n  a n d  S t r u c t u r e  F u n c t i o n s  The  differential cross-section for 
inclusive scattering (eP -~ e 'X) is given by: 

1 d3k I nx f d3p~ nx 
da - j 2E,(2 , )3  ~ YI  j (27r)32pi01AI2(27r)454(p + q - ~ P i ) .  (2.4) 

X i = 1  i = 1  

The flux factor for the incoming nucleon and electron is denoted by J -- 4 P .  k, 
which is equal to J = 4 M E  in the rest frame of the nucleon. The sum runs 
over all hadronic final states X which are not observed. Each hadronic final 

•X state consists of n x  particles with momenta  Pi ( ~ i = l  Pi - Px) .  The squared- 
amplitude 1,412 can be separated into a leptonic (l ~ )  and a hadronic (W ~ )  
tensor (see Fig. 2): 
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where a --- 1/137 is the electromagnetic fine structure constant.  The  leptonic 

/ k  

l"e~rcnic 

(0) (o) 

P P 

Fig. 2. The squared amplitude ,4 for electron-hadron scattering can be separated into 
a leptonic tensor l ~'~ and a hadronic tensor W ~ .  

tensor l ~ is given by the square of the elementary spin 1/2 current (summed 
over final spins): 

l = s) 
8 t 

= 2(k'~k ~" + k'~k ~) - 2 g ~ k  • k' + 2ie~'X~q~s~, (2.6) 

and consists of parts symmetric and antisymmetric in # and v. The  ant isymmet-  
ric part  is linear in the spin vector s, which is normalized to s 2 = - m  2. While the 
leptonic tensor is known completely, W ~ ,  which describes the internal s t ructure  
of the nucleon, depends on non-perturbat ive strong interaction dynamics. It is 
expressed in terms of the current j r  as: 

4 r W  ~" = ~ _ , ( P S [ J ' [ X > ( X I J v ] P S > ( 2 r ) 4 5 ( P  + q - p x )  (2.7) 
x 

= / d4~eiq'~(PSl[g'u(~), J~'(O)]IPS)c. (2.8) 

The steps leading from (2.7) to (2.8) include writing the 5 function as an expo- 
nential, 

(27r)454 ( g )  = / d4~e i~'g, (2.9) 

translating the current, e~ ' (P -Px ) (p s I J~ ' (O) IX )  = ( P S I J " ( ~ ) ] X ) ,  and using 
completeness, ~ x  IX>(XI = 1. Note that  another term has been subtracted 
to convert the current product  into a commutator .  It is easy to check tha t  the 
new term vanishes for qO > 0 which is the case for physical lepton scattering 
from a stable target. The  subscript c means that  the graphs associated with the 
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matrix element must be connected. Finally, note that the states are covariantly 
normalized to: 

(PIP')  = 2E(2~)353(P- P').  (2.10) 

The optical theorem: 
2 r W  ~" = Im T ~" (2.11) 

relates the hadronic tensor to the imaginary part of the forward virtual Compton 
scattering amplitude, T: 

= i f d4~e 'q'~ (PS[T(J~  (~)J~ (0))[PS) (2.12) 
J 

as shown graphically in Fig. 3. 

p P P 

Fig. 3. The optical theorem relates the hadronic structure tensor, W ~v to the imagi- 
nary part of forward (P -~ P', q = q'), virtual (Q2 < O) Compton scattering. 

St ruc tu re  Funct ions  Using Lorentz covariance, gauge invariance, parity con- 
servation in electromagnetism and standard discrete symmetries of the strong 
interactions, W #~ can be parametrized in terms of four scalar dimensionless 
structure functions F1 (x, Q2), F2(x, Q2), gl (x, Q2) and g2(x, Q2). They depend 
only on the two invariants Q2 and v, or alternatively on Q2 and the dimension- 
less Bjorken variable x. Splitting W #v into symmetric and anti-symmetric parts 
we have, 

W ~ = W (~} + W [~], (2.13) 

with 

W{"V} = - g " V +  q2 I F 1 +  p , _ ~ q  p v _ ~ h q ~  --,F2v (2.14) 

W [g~l = -icg~X~q~ (gl +92) ~ g 2 ) ,  (2.15) 

where S ~ is the polarization vector of the nucleon (S 2 = -M2) ,  P • S = 0. 
S ~ is a pseudovector. Since W [gv] is a normal tensor, parity demands that  the 
S ~ appear with another pseudotensor, and the only one available is the e ~ .  
Students often ask why W g~ depends only linearly on S g - what is wrong with 
S g S  ~, for example? Lorentz invariance demands that W t'~, defined in (2.8) be 
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linear in the initial and final nucleon spinors, U(P, S) and ~'(P, S). Tensors 
constructed from these are either spin independent (0 (P ,  S)?~'U(P, S) = 2 P  ~) 
or linear in S ~ ( (0 (P ,  S)V~vsU(P, S) = 2S"),  but  tha t  is the end of it. 

Note also that  W ~ is dimensionless (we shall have more to say about  op- 
erator dimensions shortly). Factors of/2 have been judiciously introduced into 
(2.15) and (2.14) so that  the four structure functions, F~, F2, g~, and g2 are 
dimensionless. These structure functions are related to others in common use 
by: 

M 2 M2gl M4g2 
W1 = F1, W2 = - - F 2 ,  G 1 - -  G 2 -  (2.16) 

/2 /2 ~ /22 

Sca l ing  a n d  K i n e m a t i c  D o m a i n s  Our choice of invariant s t ructure  functions 
makes the determination of scaling behavior at large Q2 almost trivial. In the 
Bjorken limit where Q2 _~ c~ and v -+ co, x = Q2/2v fixed, QCD becomes 
scale invariant up to logarithms of Q2 generated by radiative corrections. Under 
a scale transformation, P -+ AP, q -~ Aq, and M -+ AM ~ M,  so a theory 
with a discrete spectrum of massive particles cannot be scale invariant except 
in a limit in which all masses are negligible. Thus no masses can appear  in 
W ~ in the Bjorken limit; it must be a dimensionless function of PU, qU, S ~, 
and the invariants Q2 and v. In particular,  it cannot depend explicitly on the 

P~ P~" Ixr W{/,v}, target  mass, M. If, for example, a term like ---M-r-,*2 appeared in it 
M 2 Q2. would violate scale invariance unless W2 vanished like - 7  at large Clearly, 

the way to avoid such pathological choices of s tructure functions is to write the 
dimensionless tensor W ~v in terms of dimensionless invariant functions using 
/2 (or Q2) to supply dimensional factors as needed. The immediate  conclusion 
is tha t  the functions F1, F2, gl, and g2 defined in (2.14) and (2.15), become 
functions only of the dimensionless rat io x = Q2/2/2, modulo logarithms, in the 
Bjorken limit, 

F l (Q2 ,v )  -~ Fl(x, lnQ2), F2(Q2, v) -+ F2(x, lnQ 2) 
gl(Q2,v)  -+ gl(x, lnQ2), g2(Q2, v) -+ g2(x, lnQ 2) (2.17) 

as Q2 and v become large at fixed x. In practice it is observed tha t  for Q2 > 
1GeV 2, the structure functions depend only very weakly on Q2. Fur thermore  
one observes an approximate relationship between F1 and F2, known as the 
Callan-Gross relation,[14] 

1 
FI - F2 ~ ln~m, (2.18) 

which indicates tha t  the particles tha t  carry electric charge (the quarks) have 
1 The different kinematic domains of interest in inelastic electron scattering spin ~. 

are shown in Fig. 4. 
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Q2 

~'~,~.*g ~=~ 

~ ~ -Q 2=M~-M 2 

B-jc~m ~ . t  

x---~ 0 

~ "u '~" 

F i g .  4.  Kinematic domains in electron-nucleon scattering. 

Flavo r  G e n e r a l i z a t i o n s  Only up, down and strange quarks appear to be im- 
portant constituents of light hadrons. The processes of interest to us, therefore 
are mediated by currents lying in the SU(3)R x SU(3)L space of u, d, s vector 
and axial currents, 

a 1 T  A a .  J~ - ~ %  ~, 

a 1 - a (2.19) J~5 -- ~¢Tu75A ¢, 

where A a for a -- 1 , 2 . . . 8  are the flavor SU(3) matrices, which are normal- 
ized to TrA~A b = 25 ab. Note, in particular, that  A3 = d iag(1 , -1 ,  0) and As = 
d i ag ,3  (1 , 1 , -2 ) .  In addition one has the flavor singlet current jo  = V ~ ¢ T u ¢ ,  

acting like ~/2diag(1, 1, 1) in flavor space. 

Cross  S e c t i on  for  E l e c t r o n - H a d r o n  S c a t t e r i n g  The differential cross sec- 
tion for unpolarized electron-hadron scattering can now be expanded in the 
Lorentz scalar structure functions by contracting the symmetric tensor (2.14) 
with the leptonic tensor, (2.6). Likewise the cross section for polarized scat- 
tering is obtained by contracting the antisymmetric tensor (2.15) with the same 
lepton tensor. The result is often quoted in terms of the experimenter's variables, 
Q2  v, 8, E and E' ,  e.g. for the spin average case, 

dS~ 4a 2 E , 2 {  8 8}  (2.20) 
d E ' d ~  - MQ 4 2Wl (q2 ' v )  sin2 -2 +W2(q2 'v)  c°s2 2 " 
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The relative importance of the two terms is difficult to judge. Superficially it 
looks as though W1 and W2 are equally important. On second thought, W1 is 
multiplied by sin 2 ~ which gets small in the Bjorken limit. On third thought, W2 

M 2 vanishes like -7-" To disentangle all this, we rewrite d~ in terms of F1, F2, x, y, 
and Q2, where scaling behavior should be manifest, 

dxdyd¢-4r2Q 2 Fl(x, Q2)+~xy 1 - y - ~ - ( ~ - l )  F2(x,Q 2) 
(2.21) 

4~2M2. No scaling approximations have been made in (2.21). Under with a -: 1 -  
typical experimental conditions y and x are of order unity, though experiments 
are now being carried out at very low-x. Since F1 ~ ~ and F2 --~ const, for 
small x, the two terms are comparable. There is no significant dependence on the 
azimuthal angle ¢, which cannot even be uniquely defined for inclusive scattering 
with an unpolarized target. 

It is clear from the tensor structure of g ~  and W ~  that no target spin depen- 
dent effects survive if the beam is unpolarized. Therefore we lose no generality 
by defining the spin dependent cross section, Aa as half the difference between 
right- and left-handed incident electron cross sections,J15] 

dxdyd¢ 4~r2Q2 cosa  1 Y y2 2 4 ( a - l )  gl(x,Q 2) 

Y i y2 --~(a-1)g2(x, Q2)} -sin(~cos¢ ( a - l ) ( 1 - y - - ~ - ( ~ ; - 1 ) ) .  

Now the azimuthal angle ¢ and the angle, a, between the target spin S and the 
incident electron momentum, k, make non-trivial appearances. These and other 

Fig. 5. Kinematic variables in polarized lepton scattering from a polarized target. 

kinematic variables are defined in Fig. 5. Note the following: 

- a is the angle between the spin vector of the target (S) and the incident 
electron beam (k), not the virtual photon direction (4). 
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- ¢ is the azimuthal angle between the plane defined by k and k '  and the plane 
defined by k and S. 

- Equations (2.21) and (2.22) are exact (except tha t  lepton masses have been 
ignored): no scaling limit has been taken. ~ - 1 - M 2 Q 2 / v  2 = 4 M 2 x 2 / Q  2 
is a measure of the approach to the scaling limit, Q2 __+ co. 

- To eliminate spin- independent  effects one may either (i) subtract  cross sec- 
tions for different values of a; (ii) subtract  cross sections for right- and left- 
handed leptons; or (iii) measure C-dependence. 

Notice that  effects associated with g2 (x, Q2) are suppressed by a factor x/~ - 1 ---- 
2Mz with respect to the dominant  s t ructure function gl (x ,  Q2). In technical 

terms, this means that  effects associated with g2 are "higher twist" - -  suppressed 
by a power of Q relative to the leading phenomena in the Bjorken limit. However, 
at 90 ° the coefficient of the dominant  term vanishes identically and allows the 
combination 2~gl -bg2 to be extracted cleanly at large Q2. This is a unique feature 
of the spin-dependent scattering. Only very rarely, to my knowledge, can a higher 
twist effect be selected by an adroit kinematic arrangement,  thereby avoiding the 
difficult process of fitting and subtracting away a leading twist effect to expose 
the higher twist correction underneath.  

2.2 O t h e r  Bas i c  D e e p  I n e l a s t i c  P r o c e s s e s  

I n c l u s i v e  e + e -  A n n i h i l a t i o n  In this process an electron with momentum k 
and a positron with momentum k' annihilate to form a massive time-like photon 
with momentum q = k + k' (Q2 - q2 > 0), which decays into an unobserved 
final state. Through the optical theorem, the total  cross section is proport ional  
to the imaginary part  of the photon propagator  (see Fig. 6), 

Fig. 6. The optical theorem relates the total cross-section for e+ e - annihilation to the 
imaginary part of  the photon propagator. 

16r2a  2 
a~o~-  Q2 / / (Q2) ,  (2.23) 

w h e r e / / ( Q 2 )  is the Lorentz scalar spectral function appearing in the photon 
propagator: 

I I ~  = (q~q~ - q2 g ~ ) I I ( Q 2 ) ,  (2.24) 
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and 

/ / (Q2) _ 6Q 2 d4~eiq'~(OI [ J , (~ ) , J " (0 ) ]  10). (2.25) 

Usually the da ta  are expressed as a rat io to the pointlike annihilation cross 
section to muons (to lowest order in aEM): 

atot(e+e - --~ hadrons) = 12~r//(Q2)" 
R(Q 2) - q (e+e_  --+ #+#-) (2.26) 

Since the hadronic process is initiated by the creation of a q~ pair, R directly 
measures the number of colors. At large Q2 it is modified only by per turbat ive  
QCD corrections: 

R(Q2) = Z 3e2 {1 + aQcD(Q2)lr + I"409aQcD(Q2)~r 2 (2.27) 
q 

-12.805 °~QcD(Q + . . .  + quark mass corrections.) (2.28) 
~r 3 

The coefficients in (2.28) are renormalization scheme dependent beyond lowest 
order. Those quoted in (2.28) were calculated in MS scheme with five flavors.[16] 
The formula for R does not depend on any details of hadronic structure,  so 
it provides an important  test of QCD (and measurement of (~QCD). Similar 
remarks apply to processes in which jets are observed in the final state of e+e - 
annihilation. Two jet events have the angular distribution tha t  one expects for 
two spin 1/2 quarks; a third jet  is associated with gluonic bremsstrahlung. These 
processes however are not sensitive to the s tructure of hadrons and we will not  
discuss them further here. 

I nc lu s iv e  e + e  - A n n i h i l a t i o n  w i t h  O n e  O b s e r v e d  H a d r o n  This process 
looks very much like a timelike version of deep inelastic scattering. Indeed it 
shares many important  characteristics, but  it also differs in essential ways. From 
the point of view of a theorist  interested in hadron structure,  the oppor tuni ty  to 
study unstable hadrons makes this process very attractive. Deep inelastic scat- 
tering from A-hyperons or w or p-mesons will never be more than a gedanken 
experiment. However, these and other unstable hadrons have already been stud- 
ied in e+e--annihi lat ion.  The physical basis of "fragmentation" - -  the process 
by which a quark created by the current from the vacuum fragments into the 
observed hadron - -  is not as well understood as DIS, making this an area of 
considerable interest at the present time. 

The kinematics for e+e - -+ P + X is il lustrated in Fig. 7. Once again two 
kinematic invariants, Q2 and v = P .  q, define the process. The  limit of interest 
is Q2, v --+ c~, with z - ~ fixed. The momentum of the virtual  photon is time- 
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P 

X 

Fig. 7. K inemat i c s  for single particle inclusive annihilation - -  e+ e - --~ P X .  

like, and tha t  makes a major  difference as we shall see in Sect. 2. The  invariants 
are often expressed in terms of quantities measured in the e+e - center of mass: 

q2 __~ Q2 _- 4E2 > 0 

p . q =_ v = E V / ' ~  

2 P . q  E < 1 ,  (2.29) 
O < z - -  q2 -- Be - 

where E is the energy of the observed hadron. We shall usually be interested the 
polarization dependence, but  here we illustrate the kinematics for the simpler, 
spin-averaged case. The cross section can be writ ten as the product  of a leptonic 
l ~  and a hadronic tensor liver: 

da  ,,~ [~vi?V ~ '  d 3 P  (2.30) 
(2r3)2E 

The hadronic tensor is determined by the electromagnetic current  and depends 
on two invariant "fragmentation functions" due to current conservation and C, 
P and T invariance: 

1 E(21r)464(  P + P x  - q) (Olg~,[PX)out  o u t ( P X [ g ~ [ o )  

x 

: Z /d4~e iq 'a  E(0 l~ (~ ) IPX)ou  t out(PX[J~(0)[0) (2.31) 
4~r x 

In contrast  to DIS, the sum over unobserved hadrons X cannot be completed 
because the state [PX)out depends non-trivially on the observed hadron.  Even 
if P and X did not interact, Bose or Fermi statistics prevents the states X from 
being complete. In practice P and X interact  dynamically, as indicated by the 
subscript "out".  For simplicity we will generally suppress this subscript. Thus, 
e+e - -+ P + X is not controlled by the product  of two operators (electroweak 
currents), a feature which complicates the study of e+e - -+ P + X significantly. 

If q2 _+ co at fixed z, the structure functions, -~1 and F2 scale^(up to loga- 
rithmic corrections) and obey a "Callan-Gross" relation,/~x + ( z / 2 ) F 2  ,~ 1 / In  q2. 
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In this limit the cross section is: 

dzd~2 da a2 { ~z l sin2OF2(z, lnq2) } (2.32) - ~ z  Fl (z ,  lnq 2) + 

In leading logarithmic order, using "Cailan-Gross", the inclusive spectrum re- 
duces to 

l d a  ~ . = ( ) 2  ^ + " ' ,  (2.33) 
adz  1~ zF1"z'q2" 

where R is defined by (2.26). 

L e p t o n  P a i r  P r o d u c t i o n  The final process we will consider in detail is mas- 
sive lepton-pair creation in hadron-hadron collisions - the so-called "Drell-Yan" 
process. The opportunities for s tudy of novel aspects of hadron s t ructure  by 
means of polarized Drell-Yan experiments have motivated a major  spin physics 
program at RHIC.[17] The kinematics of the lepton pair product ion are illus- 
t ra ted in Fig. 8. Two hadrons with momenta  P and P '  collide at a center of 

k 

P 

p, 

k' 

Fig. 8. Kinematics of the Drell-Yan process. 

mass energy s = (P  + p,)2 = 4E~M" Two leptons with momenta  kf  and k~ re- 
spectively are produced. They  result from the decay of a timelike photon, W ±, 
or Z ° carrying a momentum q, with q2 = Q2 > 0. Two dimensionless scaling 
variables are defined by x = ~ and y = 2_~q. . It is easy to see tha t  xy = Q2/s. 
The differential cross section is 

d 3 kt d 3 k2 
da oc LuvW ~v (27r)32k o (2~r)a2k o . (2.34) 

The decay of the virtual gauge boson is described by the leptonic tensor L ,v ,  
whereas all information about  the hadronic process are contained in WU~: 

W u~ = l s  E (2~r )454 (p  + P '  - q - X)  in (PP'IJ~(O)IX)(XIJV(O)IPP')in 
x 

1 f (pp,  ij~,(~)gv(o)lpp,)i n (2.35) = 5 8 da~e -iq'~ in 



Spin, Twist and Hadron Structure in Deep Inelastic Processes 191 

where the in-state label on [PP~) will usually be suppressed. W ~v contains many 
Lorentz invariant structure functions Wk. Depending on the experimental cir- 
cumstances different combinations of the Wk and differential cross sections are of 
interest. As an example we consider the inclusive cross section where the lepton 
momenta have been integrated out, leaving da/dq 4, 

da 1 OL 2 

dq' - 6~ 3 Q~'s 2 ( -WZ)"  (2.36) 

The scaling limit (s, Q2 _+ c~ but T =_ Q2/s fixed) once again yields a function 
of the dimensionless variables (x and y) modulo logarithms induced by QCD 
radiative corrections, and in this case W~ is of interest. 

W; -+ W (x, y, ln Q~). (2.37) 

3 Deep  Inelastic Processes  
from a Coordinate  Space Viewpoint  

Traditional introductions to the parton model stay fixed in momentum space, 
where they use the device of the "infinite momentum frame" to simplify dy- 
namical arguments. More sophistication is necessary to handle the complexities 
introduced by spin dependence and the subdominant effects associated with 
transverse spin in DIS. It is particularly useful to employ coordinate space 
methods, mixing parton phen0menology with somewhat more formal methods of 
the operator product expansion.J18] Certainly, sophisticated momentum space 
methods[19] can achieve the same results. However, it is particularly easy to 
distinguish and catalogue dominant and sub-dominant contributions using the 
operator product expansion in coordinate space. 

In this section we will explore the coordinate space structure of the hard 
processes introduced in Sect. 1. Much of this material is to be found in mod- 
ern field theory texts,J20] however there is an advantage to providing a brief, 
self-contained introduction which stresses only those elementary aspects of the 
formalism that are useful in characterizing deep inelastic spin physics. 

3 . 1  e + e  - --~ hadrons  - T h e  S h o r t - D i s t a n c e  Expans ion  

Inclusive e+e - annihilation into hadrons is the simplest process to analyze and 
illustrates the importance of Wilson's short distance expansion. As shown in 
Sect. 1, this process is described by the vacuum expectation value of a current 
commut at or, 

1/ 
II(Q 2) c¢ ~ d4~e iq'~ (01 [J,(~), J"(0)] 10). (3.1) 

In the center of mass system we have q = ( V ~ ,  0 ). Since the commutator is 
causal, 

[J~(~),Jv(0)] = 0 for ~2 < 0, (3.2) 
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then [~1 < ~o in the integral. Using the symmetry of the commutator one obtains: 

H(Q2) o~ f0~° d~° sinQ~ ° f d3~(O[[J~(~),J~'(O)][ O) (3.3) 

In the high energy limit, Q -~ co, sin Q~0 oscillates rapidly, averaging out contri- 
butions except at the ~o __ 0 boundary of the integration region. This argument 
can be made more formal, leading to the conclusion that ~0 ,~ ~ gives the dom- 

inant contribution to the integral. Since ~0 > ]~] we can conclude that e+e - 
annihilation into hadrons at high Q2 is dominated by interactions at short dis- 
tances, ~ --~ 0. This is, of course, a Lorentz invariant condition. 

The leading contribution to the annihilation process can now be found via 
the operator product expansion (OPE).[20] First postulated by Wilson, the ex- 
istence of the OPE has been demonstrated to all orders in perturbation theory 
in renormalizable theories and also in various toy models which can be solved 
exactly. According to the OPE, a product of local operators A(~) and/~(0) at 
short distances (here ~ --+ 0) can be expanded in a series of non-singular local 
operators multiplying c-number singular functions, 

A(~)/}(0) ,~ ~C[a](~)~[a](0) as ~ ~ 0. (3.4) 
[-] 

In general the product A/~ is singular as ~ -+ 0. The substance of the expansion 
is that the singularities can be isolated in the c-number "Wilson coefficients", 
C[~]. The operators in (3.4) are cutoff independent renormalized operators and 
the Wilson coefficients are likewise cutoff independent. 

The behavior of the Wilson coefficients at (u -+ 0 follows from dimensional 
analysis. In natural units, all quantities are measured in dimensions of mass 
to the appropriate power. For simplicity, if a quantity, 0 has units md°, we 
write do -- [0]. This is a simple concept, not to be confused with more subtle 
ones like anomalous dimensions or scale dimensions.J21] The dimension of all 
operators of interest to us can be deduced from the fact that charge and action 
are dimensionless. Thus [J~] = 3 because f d3xj°(x) = Q. For the quark field 
[¢] = ~3 because the free Dirac action is f d4x~biT.0¢+.. ., likewise for the gluon 
field strength IGor] = 2. Since we normalize our states covariantly, (PIP') = 
2E(2~r)353 (P - P ' ) ,  [(PIP'l] -- -2 .  For the vectors [P~] -- [S u] -- 1. We see that 
W ~  is dimensionless, as reflected in the form of (2.14) and (2.15). 

Dimensionalconsistency applied to the OPE requires, 

[4] + = + [0c J]. (3.5) 

What can account for the dimensions of the singular function C[a] ? If the opera- 

tors A] and/~ are finite in the rnquark --~ 0 limit, then powers of mquark can only 
appear in the numerator of C. The renormalization scale, p, necessary to render 
the theory finite can only appear in logarithms (of the form In (p~)) order by 
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order in perturbation theory. This leaves the coordinate ~ itself to absorb the 
dimensions. 

1 
C[~](~) "~ ~ Jt-[A]+[a'-'~,,~]] (In'r°(#~) + ' "  ") as ~ --+ 0. (3.6) 

The exponent 7o is the "anomalous dimension" of the operator ~ generated by 
radiative corrections. Without  minimizing the importance of these logarithms, 
we will usually ignore them and focus on the gross, power law, behavior required 
by dimensional analysis. For given operators A and /~  the leading contribution 
at short distances comes from that  term in the OPE having the lowest operator 
dimension [#[~]]. 

This can now easily be applied to e+e - annihilation. The dimension of the 
hadronic electromagnetic current is [J~] --- 3. No fields have negative dimensions, 
so the lowest dimension operator is the unit operator,  #0 = 1, with [1] = 0. The 
Co(~) ~ 1/~ 6 and the dominant contribution in the OPE is, 

1 
<01 [J,(~), J"(0)] [0) ,~ ~ ,  modulo logarithms. (3.7) 

Consequently the current correlation function scales like 

/ /(Q2) ..~ ~ d4~e iq . (  ,.~ 1, (3.8) 

again modulo logarithms, and the cross section (2.23) scales like: 

1 
a (e+e - -+ hadrons) ~ Q--g. (3.9) 

The logarithms can be gathered together into powers of ~ as anticipated in 
(2.28). Of course, having made no a t tempt  to derive the OPE or to s tudy the 
effects of radiative corrections and renormalization in detail, the example of 
the total  e+e - annihilation cross section becomes rather trivial. Nevertheless it 
provides a useful introduction to the more complicated cases which follow. 

3.2 I p  --+ I X  - T h e  L i g h t - C o n e  E x p a n s i o n  

Next we turn to deep inelastic scattering, which is characterized by two large 
invariants - Q2 and v. As we shall see, such processes are dominated by physics 
close to the light-cone. 
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Light-Cone Coordinates and Formulation of Deep Inelastic Scattering 
The four -momenta  P "  and q" can be used to define a f rame and a spat ia l  direc- 
tion. Wi thou t  loss of generality we can choose our f rame such tha t  P "  and q" 
have components  only in the t ime and e3 directions. I t  is helpful to introduce 
the light-like vectors 

P (1, O, O, I),  

1 
n"  = (1, O, O, -1 )  (3.10) 

with n 2 --- p2 = 0 and n • p -- 1. Up to the scale factor p, the vectors p"  and n"  
function as unit  vectors along opposite tangents  to the light-cone. They  may  be 
used to expand P "  and q", 

1 (v + + M2Q2) n", (3.11) 
M 2 

p "  _- p~ ÷ T n " ,  (3.12) 

In the Bjorken limit q" simplifies to 

limq" " (v ÷ l M2x) n~' - xP" ÷ O (-~22 ) (3.13) 

p selects a specific frame. For example  p = M/x~2 yields the ta rge t  rest  frame, 
while p -~ c~ selects the infinite m o m e n t u m  frame. The decomposi t ion along p~ 
and n"  is equivalent to the use of light-cone coordinates,  which are defined as 
follows. An arbi t rary  four-vector a"  = (a °, a 1, a 2, a 3) can be rewri t ten in te rms  
of the four components  a + -- ~ ( a  ° =k a3), and a ± -- (a l ,a2) .  In this basis, 

the metr ic  g,v has non-zero components,  g+_ -- g - +  -- 1 and g~j = - 6 i j ,  so 
a. b = a+b - ÷ a-b + - a ± .  b ±. The t ransformat ion to light-cone components  can 
be recast  as an expansion in the basis vectors p~ and n" ,  

Wi th  these preliminaries it is easy to find the space-t ime region which dom- 
inates the DIS. Consider the hadronic tensor W "v defined in (2.8): 

1 / d4 ~eiq. ~ (Pl [J"(~),  g~(0)] IF) (3.15) W " V  = 4--~ 

Take the Bjorken limit by keeping P fixed and q -+ oo. Define 

~" ~ ~p" + An" + ~±",  (3.16) 

we find in the Bjorken limit: 

l imq .  ~ -- ~v - xA. (3.17) 
Bj 
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Arguments similar to those used in the previous section show that the integral in 
(3.15) is dominated by ~/,~ 1/v ~ 0 and A ,~ 1/x, which is equivalent to ~- ,~ 0 
and ~+ ~ 1/xp respectively.[22, 23] As in the previous case the commutator 
in (3.15) vanishes unless ~2 = 2A~/- ~_ > 0 because of causality. Combining 
these results we find that the Bjorken limit of DIS probes a current correlation 
function near the light-cone ~2 = 0, extending out to distances (~3 and ~0) of 
order 1 .  xp  

Deep Inelas t ic  Sca t te r ing  and  the  Shor t  Dis tance  Expans ion  QCD sim- 
plifies at short distances on account of asymptotic freedom. The analysis of 
e+e - -+ hadrons simplifies greatly for this reason. Deep inelastic scattering is 
not a short distance process; it is light-cone dominated. Nevertheless it can be 
related to the OPE and to short distances with considerable resulting simplifi- 
cation. 

To show this we consider the so-called the Bjorken-Johnson-Low limit 
(limBgL) [24],[25]. This is a somewhat old fashioned method, mostly supplanted 
by Wilson's operator product expansion. It has the virtue that  the connection 
between measurable structure functions and local operators is extremely clear 
(via dispersion relations). Use of the BJL limit prevents one making mistakes in 
subtle cases.J26, 27] In the BJL limit one takes q = 0 and q0 __+ ioo, which yields 
q2 __~ -oo and x -+ -ioo. In the physical region x is restricted to be real and 
between 0 and 1. So the hadronic tensor Wuv cannot be measured in the BJL 
limit. It is useful because 1) it is dominated by short distances, and 2) it can be 
related to Wu~ in the physical region through dispersion relations. Remember 
that W ~  is the imaginary part of the forward, virtual Compton amplitude, T~ ,  
by the optical theorem, 

T~(q 2, ~) -= i f d4~ e ~a'¢ (PIT (Ju(~)Jv(0)) IP), (3.18) 

For  simplicity we suppress Lorentz indices and spin degrees of freedom for a 
while. Standard dispersion theory arguments show that T(q 2, u) is an analytic 
function of u at fixed spacelike q2 with branch points on the real-u axis at 
v = 3= 2--~M, the threshold for the elastic process 7*P -+ 7*P. In Fig. 9 one can see 
the physical region of this process and the area of the BJL limit in the complex 

1 = +1 to 3=00. This w = 1/x plane. The physical cuts lie on the real axis from 
means that T(q 2, ~) is analytic within the unit circle about the origin. The BJL 

1 limit takes ~ to zero along the imaginary axis. Thus T(q 2, u) can be expanded 
in a Taylor series in (~) about the origin in the BJL-limit. The coefficients in 
the Taylor expansion can be obtained from the dispersion relation obeyed by T. 
First remember that the optical theorem relates the imaginary part of T to the 
hadronic tensor W(q 2, u) in the physical region, 

ImT(q 2, v) = 47rW(q 2, v). (3.19) 
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zoo) [¢0 

m ~ n  ce ± 

- 1  

Fig. 9. Physical region of the forward Compton amplitude and the BJL limit in the 
complex w plane. 

Dispersion theory tells us tha t  an analytic function can be represented in terms 
of its singularities in the complex plane,[28] in this case the physical cut on the 
real axis, 

/? T(q2,w) = 4 dw' w' W(q2'w')  (3.20) 

Crossing, i.e. T(w) = T ( - w ) ,  has been used. Since T(q 2, x) is analytic for [~[ < 1 
it may be expanded in a Taylor series in powers of ~: 

l imT(q2,x)  = 4 Z Mn(q2) 1 (3.21) 
B J L  X n ' 

n e v e n  

with 

~0 
1 

M " ( q  2) = dxx n-1W(q 2 , x). (3.22) 

Now consider where the BJL limit leads us in coordinate space. Wi th  q = 0 
and qO __> ic~, the factor e iq¢ in (3.18) reduces to e -lq°i~° and forces ~0 to zero. Al- 
though the t ime ordered product  does not vanish outside the light-cone, it can be 
exchanged for a "retarded commutator",[25, 26] which does. Thus ~o __> 0 forces 
~ --+ 0 and we conclude that  the BJL-limit  takes us to short distances where 
Wilson's operator  product  expansion may be used. The O P E  analysis of the 

i multiplying the mat r ix  elements of product  of currents yields a power series in 
local operators. Identifying terms in this Taylor series with the terms in (3.21) 
we obtain the celebrated "moment sum rules" relating integrals over deep inelas- 
tic s tructure functions to target  matr ix  elements of local operators.  We will not 
pursue this direction further here - -  it is t reated in s tandard references.J29, 201 
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3.3 e+e  - --+ h X -  Once Again~ the  Ligh t -Cone  

Like deep inelastic scattering, single particle inclusive production in e +e-  annihi- 
lation is dominated by the light-cone. However, the operator product expansion 
does not apply and no short distance analysis exists. The process is described 
by the tensor introduced in Sect. 1, 

: f E (3.23) 
x 

Once again, the nucleon and photon momenta may be expanded in terms of the 
light-like vectors introduced in Sect. 3.2, 

M 2 
P"  = p" + -~ -n" ,  

1 (v + V/v 2 - M2Q 2) n", (3.24) q"= M ( v - V / v 2 - M 2 Q 2 ) P " + ~  

and in the Bjorken limit (Q2, v -+ oo with z finite), 

( 1 ~  2 ) 1 
limq" = v n" + -p" .  (3.25) 
Bj 2 z 

It is traditional to use the photon rest frame (q = 0,p ~ x/~) to analyze the 
process. However, the label on the state, (P") changes as the limit Q2 _+ c~ is 
taken in this frame, making it difficult to sort out the important regions of the ~- 
integration. Things are simpler in a frame where P is fixed, e.g. the rest frame of 
the produced hadron, where p = ~22" In such a frame, the analysis of the fourier 
integral in (3.23) proceeds exactly in the same way as for the electroproduction 
process of Sect. 3.2. With 

~" = ~p" + An" + ~"± (3.26) 

we find in the Bjorken limit 

A 
limq. ~ = ~/v - - .  (3.27) 
B j  Z 

So, v -~ c~ implies ~1 --> 0 and A -~ z, since z is finite. So light-like separations 
~ ,  -~ 0 dominate again unless unusual variations occur in the matrix elements 

~_, (O[J(~)[PX) (PX]J(O)IO), (3.28) 
x 

which will not happen in the frame where P is independent of Q2 and ~. Also 
the frequencies associated with the states in the sum ~ IX ) (X t know nothing 

x 
about Q2 and v, and will not spoil the argument. For a contrasting situation see 
the discussion of Drell-Yan in the following sub-section. 
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One can thus conclude that light-cone distances dominate fragmentation. 
However, in contrast to DIS the OPE cannot be applied here since the observed 
hadron state, ]P) interferes with the attempt to complete the sum on X. Never- 
theless nearly all of the QCD phenomenology developed for DIS can be carried 
over to this case, primarily using momentum space methods we will not discuss 
here.[30] In Sect. 6 we will see that the limitations on the coordinate space anal- 
ysis do not prevent us from analyzing spin, twist and chirality in fragmentation. 

3.4 P P  --+ l + l - X  - T h e  D r e l l - Y a n  P r o c e s s  

Finally we consider the Drell-Yan process. Here the relevant hadronic tensor is 
(see Sect. 1): 

18 / Wp'Ij.( )jv(o)wP'). (3.29) 
It is simplest to consider the case where only the dilepton invariant mass dis- 
tribution da/dq 2 is measured, though other observables behave similarly, d~ 
depends only on W~. We define a function, W(s, Q~) by integrating W~ over all 
q~ with q2 = Q2 and qO > O, 

1 In d4q 5(q2 W(s, Q2) _ (2r) ~ - Q2)(-g"VW~,,)O(q°), (3.30) 

= _4r2s  fnd4qS(q2 _ Q2)E(2r4)54(p + p , _  q _ x )  
x 

× (pp, Ijglx)(xij t ,  ipP, ) . (3.31) 

The virtual photon's momentum is integrated over all values consistent with the 
constraint q2 = Q2 and conservation of energy, v / ~  < qo < (s + Q2)/2x/~, 
which defines the region R. If we introduce the function 

z~f(¢, Q~) = fR ~ d4q ~-*q~5(q~ - Q2)O(qo) ,  (3.32) 

then W(s, Q2) can be written as 

Q2) = -s  / d4¢ A~(~, Q2) (pp, lj,(~)jg(o)lpp,). (3.33) W(s, 

In the scaling limit (Q2, s -~ c~,~- = Q2/s fixed) A~(~,Q 2) approaches a 
well-studied function of quantum field theory, the free field singular function, 
A+(~, Q2),[31], 

,4+ (so, Q:) = 4--~e(¢o)5(¢ 2) 
rni 

+ mi._.__O(-~2)K1 (O V f ~ ) .  (3.34) 
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A+ (~, Q2) is singular on the light-cone and would select out light-cone contribu- 
tions were it not for high frequency variations in the matr ix  elements. These can 
occur because the hadron momenta  P and P '  cannot be kept fixed as Q2 ___> c~ 
(s ~ 2 P .  P '  > Q2) in any frame. Even in free field theory or the par ton model 
the matr ix  element behaves like 

~ f dadZe'a"'~+'~P"~f(a,Z), (3.35) (PP'IJ'(¢)J~,(O)IPP') 

where f ( a ,  fl) labels the momentum components of the par tons that  contr ibute 
to the current. To see that  such variation can lead to contributions off the light- 
cone, consider a frame defined through the two vectors 

p"  = p (1 ,0 ,0 ,  1), 

s (1, 0,0, - 1 ) .  (3.36) 

The hadron and photon momenta  can be writ ten as 

M 2 
p~ _- p~ + - - p ' ~ ,  

8 

M 2 
pit, = p't, + jot,, 

8 

q" = yp" + xp 't', for IqTI << v/-~. (3.37) 

With ~g = r/pg + ~p'g + ~ the hadronic tensor (3.29) is then equal to 

W~ = / d)~drld2(T / dadl3 f(a, j3)e ~[(~'-~)~+(~-~)'?l. (3.38) 

Therefore the phases will cancel and the Drell-Yan process will escape from the 
light-cone if a ~ y = 2q. P'/s and fl ~ x = 2q. P/s. In Sect. 5 we will re turn to 
this process and see that  such phases are generated in a natural  way. 

3.5 D o m i n a n t  a n d  S u b d o m i n a n t  D i a g r a m s  

Guided by our understanding of the regions of coordinate space impor tan t  for 
various deep inelastic processes, we can re turn to the more familiar world of 
Feynman graphs and learn which diagrams are likely to give dominant  and sub- 
dominant contributions. The quarks that  couple to electroweak currents propa- 
gate according to SF(~), the Feynmaa propagator.  In coordinate space, SF(~) 

behaves like ~ at short distances ~ 4 ~ e  (note SF(~) f d p~.--~_~), Interactions will 
not increase the singularity. For example, coupling a g~uon to the propagat-  
ing quark gives, Generally speaking in renormalizable field theories, interactions 
on propagating lines do not increase the order of the short-distance or light-cone 
singularity by more than logarithmic terms beyond free field theory. This can be 
used as a guideline to estimate the importance of different per turbat ive  diagrams 
for hard processes. 
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0 

1 

Fig. 10. The Feynman Propagator. 

0 

[ d94s 1 

Fig. 11. The coupling of a gluon to propagating quarks. 

As a first example, consider e+e - --+ hadrons. The total cross section is 
proportional to the vacuum polarization of the photon propagator, whose lead- 
ing contribution results from the quark-antiquark loop fourier transformed, this 

Fig. 12. Quark-antiquark loop. 

(9(~) behavior generates a cross section which scales like 1 ~ .  Radiative correc- 
tions introduce logarithmic dependence on ~2, In ~2/~2, where/~2 is the renormal- 
ization point, but they do not change the power of the singularity in a renormal- 
izable theory. The renormalization group may be used to sum classes of diagrams 
giving modifications of the ~ behavior which go like powers of logarithms in an 
asymptotically free theory hke QCD. 

In deep inelastic scattering the leading contribution to the cross section or the 
forward Compton amplitude is shown in Fig. 13. It dominates because the free 
quark propagator has the greatest possible light-cone singularity. The modifica- 
tions shown in Figs. 14-17 introduce only logarithmic modifications of the -~ 1/~ 3 
singularity. Renormalization group summation of leading In ~2 dependence leads 
to powers of In (2#2 but no change in the fundamental power singularity. All 
radiative corrections can be classified in the fashion outlined by Figs. 14-17. 
For single particle inclusive e+e - annihilation one finds in analogy to deep in- 
elastic scattering the leading diagram Fig. 18 which has a singularity 1/(  3 from 
a propagating quark. Radiative corrections can be treated as before. If light-cone 
dominance were the only consideration, the diagram in Fig. 19 would dominate 
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q ). 

P P 

Fig.  13. Leading diagram in deep inelastic scattering. The quark propagator between 
the two currents carries the large momentum q~ and leads to a 1/~ s behavior at small 
distances. 

Fig .  14. Radiative corrections to the quark propagator lead to 0 (as ( ~ 2) ) corrections 
to the coetficient of the leading 1/~ s term. 

k ~ - ~  I - -~-- -  
k2>~2 

k2<.2 

Fig.  15. The higher order contributions in the upper part of the diagram (a), where 
the quark virtuality is greater than p2 lead to more O (a,(~2) 1n#2~2) corrections. 
The lower radiative corrections (b) can be absorbed into the quark-hadron amplitude 
which will then depend on the renormalization scale #2. 
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k2-Q2 I 
k 2 >~2 

[- 

k2<~2 J 

Fig. 16. The upper part (a) here generates a c-number coefficient function for gluonic 
operators in the product of  two currents, beginning at O (ocs(~ ~) ln/~2~), while the 
lower part (b) can be absorbed into a new gluon-hadron amplitude. 

Fig. 17, These corrections are either gauge artifacts or modifications of  lower order in 

the Drell-Yan process. However, if one studies the flow of hard momentum,  this 
diagram turns out to be suppressed. The  quark which brehmsstrahlungs the 
massive photon must be far off-shell, which is unnatural  in a hadron-hadron 
collision. In coordinate space this is reflected by the fact tha t  no large phases 
are generated by the matr ix  element. The dominant  contribution to the Drell- 
Yan process is shown in Fig. 20. The enclosed parts appear  to be identical to 
the quark-hadron amplitude that  occurs in the diagram that  dominates in deep 
inelastic scattering. This means that  at tree level, the same structure functions 

Fig. 18. The dominant diagram for the single particle inclusive e+ e - annihilation. 
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Fig. 19. The diagram that has the leading light-cone singularity of the Drell-Yan pro- 
cess, but does not dominate. 

P r 

p, ~_ 

A A I , ~  

- - - -  J 

I 

w v  ~ I r 

J 

Fig. 20. Dominant diagram of the Drell-Yan process. 

that appear in deep inelastic scattering also contribute to the Drell-Yan process. 
The diagram should still be dressed with QCD radiative corrections. The factor- 
ization theorem of QCD[32] says that  this correspondence survives even in the 
presence of radiative corrections. 

A subtlety of the Drell-Yan process is that the term most singular on the light- 
cone does not dominate, nevertheless the diagram gets its dominant contribution 
from ~2 ~ 0. Returning to the definition of W ( Q  2, s), we see that A~(~, Q2) 
forces ~2 to zero, but the phase factors generated by the two separate quark- 
hadron amplitudes select tangent planes to the light-cone that contribute to the 
~+ and ~- integrals respectively. 

One can now generalize these results to other processes, appealing to factor- 
ization. [32] For example Fig. 21 shows the dominant contribution to one particle 
inclusive deep inelastic scattering in the current fragmentation region. Building 
blocks of these calculations are (a) and (b), defined and measured in e+e - -+ 
hadrons and DIS respectively. Factorization allows them to be carried from one 
process to another. They are the fundamental objects of study in hard inclusive 
QCD and command our attention. 
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P 

h h 

J 

Fig. 21. Dominant diagram for the one particle inclusive deep inelastic scattering. 

4 Deep  Inelastic Scattering 
and General ized Distr ibut ion F u n c t i o n s  I 

In this first of two sections on deep inelastic scattering the focus will be on 
developing the tools necessary to perform a complete classification of effects at 
leading and next-to-leading order in ~ .  We begin with some simple consider- 
ations of dimensional analysis, which we then apply to introduce the operator 
product expansion (OPE) and introduce the concept of "twist" which is useful to 
classify contributions to hard processes. To proceed further we must understand 
how to treat the Dirac structure of quark fields on the light-cone. This leads 
us briefly to explore light-cone quantization and introduce helicity, chirality and 
transversity as they apply to this problem. We will then look in some detail 
at a typical leading twist (O(1)) and next-to-leading twist (O(~)) distribution 
before attacking the complete problem in Sect. 4. 

4.1 Twist 

In Sect. 2 we introduced the operator product expansion (OPE) as a tool for 
analyzing e+e - ~ hadrons, where the operator with lowest dimension domi- 
nates. We also argued that light-like distances (~2 ,~ 0) dominate deep inelastic 
scattering. However, operators of high dimension can be important in this case. 
Instead a new quantum number, "twist", related to both the dimension and spin 
of an operator, orders the dominant effects. 

Twis t  and  the  O P E  As we learned in Sect. 2, the hadronic structure tensor 
of deep inelastic scattering, 

4 w,. = / J (O)]IP, S> (4.1) 
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is dominated by ~ ,~ 0 in the Q2 -+ oo limit. To make use of this, we expand 
the current commutator  in terms of decreasing singularity around ~2 = 0, 

[J(~) ,  J(0)]  .~ E K[o] (~2)~"~ • • • ~"~' 0 . , - . . . - o  (0), 
[0] 

(4.2) 

where 0,~...~. ° (0) are local operators, and K[0](~ 2) are singular c-number func- 
tions that  can be ordered according to their degree of singularity at ~2 = 0. 
Operators of the same singularity at ~2 = 0 will be of the same importance as 
~ u ~  -+ 0 even though numerator  factors of ~, render some less singular than  
others as ~ --~ 0. For simplicity we have suppressed all labels, including spin, on 
the currents J(~). It often convenient (and sometimes essential) to regroup the 
terms in (4.2) so tha t  the operators 0 ~ . . . ~  e are traceless (i.e. g~'~'20~,~...~ o = O, 
etc.) and symmetric in their Lorentz indices. We will assume this has been done. 

Substi tuting the OPE into the definition of the s tructure function gives: 

4roW = f d4~e iq'~ E K[0] (~2)~"' • • ""'' (PI0"l'""~o (0)IP) '  (4.3) 
[01 

where the matr ix  elements have the form: 

(Pl0t,,...t,.o (O)l P)  = Pt,1. . .P t , . oMd°- '~ ' -2  fo + . . . .  (4.4) 

The . . .  represent several types of terms which are less impor tant  in the Bjorken 
limit. We will re turn to them after looking at the dominant  term. 

Note that  the power of a mass scale which appears in this expression is 
determined by dimensional analysis alone. We use the parameter  M generically 

- z  ,.~ M N / 3 .  The power with for a typical hadronic mass scale M .~ AQvD "~ RBag 
which M occurs defines the twist  of the operator  8, 

te - do - no (4.5) 

The degree of the light-cone singularity of K[o] "~ ~-6+te is also determined by 
dimensional analysis and depends only on the twist, to. 

To carry out the fourier t ransformation make the substitution, 

0 
~ ~ - 2 i q "  Oq 2 (4.6) 

which yields, 

4 ~ r W ~ E ( ~ ) t o - 2 ( 1 ) n ' ] o  (4.7) 

{0} 

So the importance of an operator  as q2 _~ c~ is determined by its twist. As we 
shall see, it is typical for towers of operators with the same twist (and other  
quantum numbers such as flavor) and increasing spin to appear  in the OPE.  

- i n o  Then it is convenient to sum over spin - -  ~'~no fo ~ - ]o (x) - where we now 
use the label 0 to refer to the entire tower of operators.  
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The effect of radiative corrections is to introduce logarithmic dependence on 
Q2 into the function ]0. Note however tha t  the power law dependence on Q2 
is fixed by twist through dimensional analysis. Let us now return to the terms 
omit ted in (4.4). These include terms like P~,~... P~,,~_2g~,,,_I~,,,M~ tha t  make 
the expression traceless. It  is easy to see tha t  these contr ibute at most corrections 

of order ~ to the te rm we have kept. To carry through a complete analysis 

beyond order ~ it is necessary to keep careful t rack of these terms. This, and 

the fact tha t  interesting spin effects appear  at O(-~), are the reasons we do not 

consider O ( ~ )  here. 
The lowest twist operator  towers in QCD have to -- 2 and scale - modulo 

logarithms - in the Bjorken limit. This reflects the underlying scale invariance 
of the classical lagrangian. The matr ix  elements of higher twist operators,  or the 
higher twist manifestations of twist-two operators are invariably signalled by the 
appearance of positive powers of mass in expressions analogous to (4.4). Dimen- 
sional analysis then forces compensating factors of large kinematic invariants in 
the denominator,  suppressing the contribution. The simple conclusion is tha t  we 
can order the importance of effects in the deep inelastic limit simply by keeping 
track of masses we are forced to introduce into the numerators of parton-hadron 
amplitudes in order to maintain the correct dimensions. 

E x a m p l e s  a n d  a W o r k i n g  R e d e f i n i t i o n  o f  T w i s t  To make the preceding 
discussion clearer, here are some explicit examples from free field theories. These 
examples are not only pedagogical - the second one generates the leading twist 
effects in QCD up to logarithms. The light-cone singularities can be isolated 
easily. For the t ime ordered product  of two scalar currents built  from scalar 
fields, J(~) =: ¢(~)¢(~) :, one can use Wick's theorem to show that ,  

T(J(~)J(O)) = - 2A~(~ )  + 4iAF(~) : ¢(~)¢(0) : + :  ¢(~)¢(~)¢(0)¢(0) :, (4.8) 

where the normal ordering operation is sufficient to render the operator  products  
finite (in free field theory) as ~ --~ 0, and 

i 1 
AF(~) -- 4~r 2 ~2 _ ie (4.9) 

for a massless scalar field. To finally obtain the form of (4.2), simply Taylor 
expand the bilocal operators - 

: ¢ f f ) ¢ ( 0 ) : =  : : 

n 

(4.10) 

The current associated with a vector flavor symmet ry  of a fermion field is 

_ )~ 
(4.11) 
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Making use of the identity 

[~1¢1, ~2¢2] = ~1 {¢1, ~2 }¢2 - ~2 {¢2, ~1 }¢1 (4.12) 

(because (¢1, ¢2} = 0 in free field theory), and, for a massless field, 

{¢(~), ~(0)} = 1~(~o)~(~2),  (4.13) 

one can now express the commutator of two currents in terms of bilocal operators 
[33]: 

1 [d ~ _~(~,0) [g~(~), J~b(0)] = - - ~  (0pe(~o)5(~2)) _ ~bcq"P~a4c _ idabC e#pva s5c  ( ~ , O ) 

i r a b c s # P v a S  c (/: O~ + fabce'PVaASC(~, 0)] (4.14) 

where the Lorentz structure is split into a symmetric and an antisymmetric part 

according to: 

v~vPg, v : S~pv~v~ - ie~pv~V~V5 , 

1 
S#pva - -~ TrT~ vp%,%,  = g#pgva -I- g#ag~p - g#~gap, (4.15) 

and the flavor structure is split in a similar way: 

A~A b = (dab~A ~ + i f~bcAc) .  (4.16) 

The symmetric and anti-symmetric vector and axial bilocal currents are defined 
by, 

S / A ~ ]  ~ - ~(~)~7,[751¢(0) 4- ¢(0)~V,[q,s]¢(~) (4.17) 

Once again the form of (4.2) is obtained by Taylor expanding the bilocal opera- 
tors. 

We have presented these formulas in their full complexity because they sum- 
marize the algebra of free quarks at short distances. All of the traditional results 
of the quark patton model applied to DIS (scaling relations, the Adler, Bjorken, 
Gross-LleweUyn Smith and other sum rules, the Callan Gross relation, etc.)  can 
be obtained directly from these relations. [26] 

The steps of first expanding the bilocal operators, then resumming the tower 
after fourier transformation are very inefficient. Clearly it should be possible to 
work directly with the bilocal operators. The twist content of a bilocal opera tor  
is somewhat more complicated than that of a local operator. Consider, for ex- 
ample, the bilocal current, ¢(0)V~¢(~), which occurs in (4.14). The operator has 
dimension three and, were it a local operator, it would have spin-one. In fact it 
sums an infinite tower of operators of increasing spin and dimension, with t > 2. 
For example at short distance one can write: 

¢ (0)~¢(~)  = ¢(0)~¢(0)  + ~v¢(0)~0v¢(0) + . . .  

-- JZ(0) + ~OZV(0) + . . . .  (4.18) 
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j r  (0) is traceless, symmetric and local and has twist-two. The operator  8 ~'~ can 
be decomposed into a traceless operator  and a "trace": 

- ~  ~}+a~ ~,. (4.19) 

The first te rm is traceless, symmetric,  with twist-two. The second operator  has 
spin-0, hence its twist is four. Further  terms in the Taylor expansion of the 
bilocal operator each yield a tower of local operators beginning at twist-two and 
increasing in steps of two. 

Up to now we have used twist only in the sense in which it was originally 
introduced - -  to = do - no. In practice, twist is used in a less formal way, 

1 (modulo logarithms) at which a part icular  effect is to denote the order in 

seen in a particular experiment. If it behaves like (1/Q2) p, then the object of 
interest is said to have twist t = 2 + 2p. A traceless symmetric  operator  of 
twist t will generate contributions tha t  go like ( l /Q2)  (2-0,  ( l /Q2)  (4-0 . . .  as we 
saw explicitly for the operator  0 ~ .  Although the two meanings of twist do not 
coincide perfectly, both  are in common use. 

We will make a definition of the twist of an invariant matrix element of a 
light-cone bilocal operators,  tha t  determines the scaling behavior of the mat r ix  
element. Matrix elements of operators like e.g. ¢(0)7~¢()~n) are the basic build- 
ing blocks of the description of hard processes in QCD. So we will call "twist" 
the order in M / Q  at which an operator  matr ix  element contributes to deep in- 
elastic processes. A few virtues of our working definition are a) tha t  it is easily 
read off by inspection of matr ix  elements; b) tha t  it directly corresponds to sup- 
pression in hard processes; and c) tha t  effects we label twist-t never enter hard 
processes with suppression less than  ( M / Q )  ~-2. The twist we associate with the 
invariant matr ix  element of a specific bilocal operator  can be determined sim- 
ply by considering the powers of mass which must  be introduced to  perform a 
Lorentz-tensor decomposition of the matr ix  element. The powers of mass carry 
through the entire calculation to the end where each power is compensated by 
a power of Q in the denominator.  Twist-two results in no suppression, therefore 
t - 2 is to be associated with the number of powers of mass introduced in the 
tensor decomposition of a matr ix  element. 

The method is best explained by example. Consider the spin averaged mat r ix  
element of the bilocal current, ¢ (~n)7~¢(0)  on the light-cone, 

(el~-p()~n)^/~¢(O)[P) = p~' f l (A) + n~ M2 ]2()~), (4.20) 

where the factor of M 2 must be introduced because [n ~] = - 1 .  The twist of the 
first te rm is two but,  due to the appearance of the factor M 2, the twist of the 
second term is four. In a physical application we assert tha t  the factor of M 2 will 
survive all manipulations and appear in the result compensated dimensionally by 
a factor of 1/Q 2. Note that  it is possible for f l  to pick up multiplicative factors 
of M 2 / Q  2 during a calculation. Twist  tells us the leading, not the exclusive, Q2 
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dependence of an invariant piece of a light-cone bilocal operator.  As a second 
example, consider 

(PI~b(An)¢(O)IP) = Me(A). (4.21) 

e(A) has twist-three due to the factor M which must be introduced to preserve 
dimensions. Finally, consider the matr ix  element of a gluonic operator  

(PIG~(An)G~v(O)IP) = p~,pv f l  (A) + (p~nv + pvn~,) f2(A)M 2 + n , n v  f3(A)M 4, 
(4.22) 

which has a twist content that can be worked out by the reader. 

S p i n  a n d  T w i s t  Counting twist in the case of polarized targets  (or fragments) 
has an added complication. The Lorentz tensors which describe a hadron's  spin 
can appear in the Lorentz decomposition of matr ix  elements - -  their role in 
determining twist must be explained. The objects of interest in polarized scat- 
tering (or fragmentation) are forward scattering matr ix  elements on a null plane: 
(P, clO(An , O)IP, ~). The matr ix  elements are bilinear in e and e*, where e and e* 
are the generalized spinors describing the target  (Dirac spinors for spin 1/2, po- 
larization vectors for spin 1, etc.). The matr ix  element is a tensor function' of e 
and e*. For sp in- l /2  the only (non-trivial) tensors which can be built  from u × 
are ~ u  = 2 P  ~, a vector, and fi~/~q'sU -- 2S ~, an axial vector. We have already 
analyzed P~ (it gets decomposed into p~ and n~). To expose the twist content 
of terms proportional  to S ~, express it in terms of p~ and n~: 

S ~ = (S.n)p" + (S.p)n ~ + S~,. (4.23) 

Since S.p = -M2S.n/2,  it is clear that the second term contributes at twist-four. 
The transverse spin term is more subtle. Because we have chosen to normalize 
S 2 = - M  2, [S±] -~ 1 and because there are no transverse momenta in the 
problem, S~_ contains a hidden factor of the target mass. At the end of the 
day this factor will manifest itself in a suppression by ~ .  So we conclude that 
appearances of S± accompany twist-three distributions. An example is provided 
by: 

< P S I ¢ ( O ) ~ 5 ¢ ( A n ) I P S )  = S . n  p~gl(A) + S~_ gT(A) -{- S . p  n~g3(A). (4.24) 

According to dimensional analysis, gl is a twist-two object,  gT has twist-three 
and g3 is a twist-four function. When combined with the analysis of the following 
section, one finds that  the function we have labeled gl is the scaling limit of the 
"gl" defined in Sect. 1. Similarly, gT turns out to be gl + 92. We discard 93 
because we are not concerned with twist-four. 

The same method of analysis can be extended to higher spins. For a spin- 
1 target,  all polarization information is contained in the spin-density matr ix  

e* which contains scalar (e* • e), vector (S~ - -M~e~va~P e e ), and 7//~v ~--- £/~ v ,  
. M "2 

tensor ( ,)~ -- ~ + ~ + g ~ - ~ - )  polarization information. Note [S ~] = 1 
and [~,~] = 2. To determine the twist of the associated distributions, ~ must 
be projected along p~, n ~ and transverse directions.[34] For even higher spins a 
multipole analysis is more streamlined.J35] 
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4 . 2  D o m i n a n t  D i a g r a m  i n  C o o r d i n a t e  S p a c e  

As a final, and physically important example, we take the dominant diagram 
identified in Sect. 2 and use coordinate space methods to compute it. Since the 
quark that propagates between currents suffers no interactions (we are ignoring 
gluon radiative corrections here), we may use free field theory. Working out the 
commutator of free currents, we get 

w;ab = 14re / d4~e'q'~(P' S][J;(~), gb(0)]]P, S) (4.25) 

( 1 ) 2  /d4,eiq.¢op(5(,2)~(,o)) a b c  cot =-  {S, pv,~d (PSIA (~,O)IPS) +...} , 

which corresponds to the handbag diagram of Fig. 13. The . . .  represent three 
more terms, given in (4.14). This simple free-field picture is modified by: 

- vertex and self energy corrections, which modify the singular function (Fig. 
14). They give rise to logarithmic corrections, as do the dominant parts of 

- ladder graphs (Fig. 15), and 
- box graphs, which mix in gluons at O(as) (Fig. 16). Finally, 
- in order to preserve color gauge invariance, one has to remember that the 

quark propagates in a gluon background (Fig. 17). 

On account of the last point, the singular function of free field theory, 
{¢(~), ¢(0)} = 2~e(~o)5(~2), must be changed to 

( /0 ) {¢((), ¢(0)} --+ 1z~.@e(~o)5((2) p expi d~"A,(() , (4.26) 

which is the quark propagator in a background gluon field. [The path ordering 
(P) is necessary because .4, (~) is a matrix in color space.] The color field .4" 
is that generated by remnants of the target nucleon and must be viewed as an 
operator sandwiched between the target hadron states. The bilocM operators in 
(4.25) are therefore replaced by, 

¢(~)F¢(O)--+¢(~)P(expifoCd~"A,(~))F¢(O), (4.27) 

where F stands for whatever color/flavor/Dirac matrices appear between ~] and 
¢. The 5-function in (4.25) selects the light-cone. If we expand ~" about the null 
plane, ~" = )~n" + ~", it is easy to see that the terms involving ~ are twist-four 
and higher. One therefore has: 

( /: ) exp - i  ¢ ( a n ) [ P S / + . . . ,  (4.28) 
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where the . . .  represent the parts that  vanish on the light-cone and have a twist 
> 4. In the light-cone gauge n • A --- 0, explicit reference to gluons disappears. 

However, the inclusion of the "Wilson link", ~ (expi  f :  d~UAu(~)), is essential 

in generating higher twist (4 > 4) gluon corrections. 
In the unpolarized case, the twist expansion of the bilocal operator matr ix  

element gives 

/ ~e~)~lPlCa(O)7~¢a(~n)]P } =_ 2fla(x)p~ + 2M2f4a(x)n~ (4.29) 

and, carrying out the fourier transform in (4.25), we find 

2 a 1 eo(/1 (4.30) 

where a = u, d, s , . . .  is the flavor index. The interpretation in terms of the pat ton 
model will be given later in this section. 

A brief summary to this point is: Up to and including twist-three the basic 
objects of analysis in DIS are forward matr ix elements of bilocal products of 
fields on the light-cone and in light-cone gauge, 

Fix)= ~--~e (PSI¢(O)F¢(An)$PS). (4.31) 

Remember, tha t  important  In Q2 radiative corrections have been ignored in pur- 
suit of the twist and spin dependence. 

4.3 Learning from Light-Cone Quantization 

Since the dominant contribution to DIS comes from the light-cone, it is natural  
to consider a dynamical formulation in which the light-cone plays a special role. 
At the birth of deep inelastic physics it was recognized that  field theories simplify 
in some important  ways if they are quantized "on the light-cone" rather than  
at equal times.J36, 37] Unfortunately some features which are simple at equal 
times become difficult on the light-cone. Certainly, as we shall see, there is much 
insight to be gained by considering deep inelastic processes using light-cone 
quantization. The larger question - whether QCD simplifies in essential ways 
when quantized on the light-cone - will not be pursued here. 

Field theories may be quantized by imposing canonical equal-time commuta- 
tion (or anticommutation) relations on the dynamically independent fields.J20] 
Lorentz invariance requires that  any other space-like hyperplane in Minkowski 
space would serve as well as ~0 = 0. A null-plane, such as ~.n -- 0 is the limit of a 
sequence of space-like surfaces, and includes points that  are causally connected. 
Although a field theory quantized on at ~. n = 0 could differ from one quantized 
at ~0 = 0, they coincide for all examples of which I am aware. Let us study what 
happens if we a t tempt  to quantize fermions on the surface ~+ = 0.[38] First 
we must introduce and familiarize ourselves with the unusual kinematics of the 
light-cone. 
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L igh t -Cone  Kinemat i c s  We have previously introduced light-cone coordinates 
= ~ ( ~  4- ~a) and = (~1, ~2), and the metric ga~, with g+_ = g_+ = 1, 

and gij = -5~j. The partially off-diagonal structure of g makes raising and 
lowering indices confusing, viz., a + = a_, and so forth. So we work with upper 
(contravariant) indices as much as possible. 

Quantizing at (say) ~+ = 0, we are committed to ~+ as our evolution variable 
(just as quantization at ~0 = 0 fixes ~0 as the "time"). ~- and ~± are therefore 
kinematic, not dynamical variables. The conjugate momenta p+ and p± param- 
eterize the fourier decomposition of the independent light-cone fields, just like p 
in ordinary quantization, p -  is the "Hamiltonian" for light-cone dynamics. 

D irac Algebra  on the  Ligh t -Cone  The usual selection of 7 ° = diag(1, 1, - 1 -  
1) is prejudiced toward equal time quantization. Then a (anti-) particle at rest 
has only ("lower") "upper" components in its Dirac spinor. Much of our analysis 
is simplified by choosing a representation for the Dirac matrices tailored to the 
light-cone.[38] To represent Dirac matrices compactly, we use the "bispinor" 
notation: let (0.1,0.2,0.3) and (pl, p2, p3) be two copies of the standard (2 x 2) 
Pauli matrices. A 4 × 4 Dirac matrix can be represented as pl ® 0.j. p controls the 
upper-versus-lower two-component space; 0. controls the inner two-component 
space. An example will clarify the notation: the Dirac-Pauli representation used, 
for example, by Bjorken and Drell is, 

( 1  O )  
7OBD = pZ ® I = 0 1 

• (oo ) 
73D = ip2 ® 0.J = -0.J 0 

7 5 D = p l ® l = ( O 1  10) 

(4.32) 

The light-cone representation useful for us is instead, 

-r°=pleo =( o 
~ ± = l ® i t r ± =  ( i o Z  itr ±0 ) 

73 = -ip2 ® a3 = ( Oa 3 -a3)0 

= (o o)  _0.3  , 

(4.33) 

where 3_ = lor2 .  It is easy to check that (4.34) satisfy the usual algebra, 
{7~,7 ~} : 2g ~'~, and 75 =/~0~1~/'2") '3. 
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Operators which project on the upper and lower two component subspaces 
play a central role in light-cone dynamics. Define :P± by, 

with the properties: 

1 ± 1  
7~±=~7:F7 = ( l ± a 3 )  

7± 1 o = + ¢ ) ,  

= = o 

= 

P _ + P +  = 1 

: P + = ( 1 0  ~ )  P -  ( ~  ~ )  

The "light-cone projections" of the Dirac field, ¢+ -- :P+¢ and ¢_ = P _ ¢  are 
known as the "good" and "bad" light-cone components of ¢ respectively. To 
save on subscripts we shall frequently replace ¢± as follows, 

¢ + ~ ¢  ¢ - = ~ X  (4.34) 

I n d e p e n d e n t  Degrees  of  F r e e d o m  The importance of P+ becomes clear 
when they are used to project the Dirac equation down to two two-component 
equations, 

i T - D - x  = - ' 7  ± • D ± ¢  + m e  

i7+D+¢ = - ' 7  ± • D ± X  + m x ,  (4.35) 

where D± = o-~ - i g  A ~ "  In the light-cone gauge A + = 0. ~+ is the evolution 
("time") parameter, but the first of (4.35) only involves 0 /0~- ,  so it appears that 
X is not an independent dynamical field. Instead the Dirac equation constrains 
X in terms of ¢ and A± at fixed ~+, 

0 
i7 -  0--~-X = - ~ ± .  D ± ¢  + m e  (4.36) 

The longitudinal component of the electric field in electrodynamic is similarly 
constrained ( i .e .  determined at any time) by Gauss's Law in Coulomb gauge, 
V • E = p. Study of the gluon equations of motion indicates that A-  is also a 
constrained variable. The independent fields are therefore ¢ and A±. X should 
be regarded as composite - -  as specified by (4.36) - -  X = ~'[¢, A±]. 

By the way, the reduction of the four-component Dirac field to two propa- 
gating degrees of freedom is not unique to light-cone quantization. In the usual 
treatment of the Dirac equation one finds only two solutions for each energy and 
momentum, corresponding to the two spin states of a spin-l/2 particle. The two- 
degrees of freedom corresponding to the antiparticle are found in the solution 
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with energy - E  and momentum - p .  In fact, the Dirac equation in momentum 
space is literally written in the form of a projection operation, A _ ¢  -- 0, where 
A-~ = 2-~(lb • m) projects out two of the four components of the Dirac spinor. 

Although the complete quantization of QCD requires much more work, the 
implication for the Dirac field is already clear: the good components  should be 
regarded as independent propagating degrees of freedom; the bad components  
are dependent fields - actually quark-gluon composites. 

The classification of quark spin states depends on the Dirac matrices which 
a) commute with :P+ and b) commute with one-another. Returning to (4.34) we 
see that  71, 72, and 75 commute with 7~+. Furthermore,  the component  of the 
generator of spin-rotations along the ~3-direction, 

(: 0) 
Ez_= [.~1,72]= a 3 , 

also commutes with 7~±. Note that  for a Dirac particle with momentum in the e3- 
direction, Z 3 measures the helicity. This set of operators suggests two different 
maximal sets of commuting observables: 

- Diagonalize 3'5 and Z 3 - -  a chirality or helicity basis, or 
- Diagonalize 71 (or equivalently, 7 2) - a transversity basis. 

Let us consider these in turn - 

Helicity Basis In the helicity basis, both  the good and bad components  of ¢ 
carry helicity labels - the eigenvalues of E 3, 

Note that  upper and lower components of ¢ correspond to good and bad light- 
cone components respectively. Referring back to the form of Vs, (4.34), we see 
that  helicity and chirality are identical for the good components of ¢ but  opposite 
for the bad components, 

- - . (4.39) 7~¢ = _~+  

+ X -  

This may look strange at first, but  it follows immediately from the composite 
nature of X- A quantum of X with positive helicity is actually a composite of a 
transverse gluon and a quantum of ¢. Since the gluon carries helicity-one (but 
no chirality), angular momentum conservation requires tha t  the C-quantum have 
negative helicity and therefore negative chirality. Remembering this association 
will help sort out the chirality and helicity selection rules which appear  in the 
following sections. 
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Transversity Basis Alternatively, we can diagonalize one of the transverse 7- 
matrices, to be specific, 71. We define eigenstates of the transverse spin-projec- 
tion operators, Q± =½(1 q: 7571), (which commute with :P±), 

Q+¢ --- ¢1 (4.40) 

Q-¢  - era, (4.41) 

and similarly for X. Of course CT/± are linear combinations of ¢±. Note however 

that ¢-r / ± are not eigenstates of the transverse spin operator ~ l = ( 0 in1)  ia 1 0 ' 
which is not diagonal in the basis of good and bad components of ¢. So we have 
to be careful that we do not carelessly confuse transversity, the quantum number 
associated with Q±, which is simple in this picture, with transverse spin, which 
is not. 

4.4  T h e  P a t t o n  M o d e l  

Following the path we are on, the parton model is merely the light-cone Fock 
space decomposition of the matrix elements which control hard processes. Since 
we have both the matrix elements and the Fock space in hand, it is straight- 
forward to construct the parton model. We will verify that the parton inter- 
pretation emerges as expected for twist-two and then explore twist-three. The 
reader should beware that twist-four is considerably more complicated. A patton 
model picture of twist-four does exist, however much work is required to make 
it obvious.[39, 19, 40] 

The Fock space in the two bases can be constructed by defining operators 
that create the appropriate components of ¢. In the helicity basis we define 
Rt(k+,k±) to create a right-handed (positive helicity) component of ¢ and 
Lt(k +, k±) to create a left-handed (negative helicity) component of ¢, and R~ 
and Lct, which do the same for the antiparticle field ¢c. In the transversity ba- 
sis we define the operators c~t(k+,k±) and j3t(k+,k±) that create the ± and 7- 
components of ¢, respectively. 

Twis t -Two We begin with the simplest case - the spin average, twist-two deep 
inelastic scattering which is controlled by the bilocal operator defined in (4.29), 

f dA ~x~ ~--~re (PSI(b(O)7~,C(An)IPS) = 2 {fl(x)pt~ -.I- f4(x)nt~ } . (4.42) 

We project out the twist-two part, f l ,  by contracting with n V. 

i f 
1 

- v~p+ f ~e'X~(PSIf t(o)¢(An)IPS).  (4.43) 
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where we have used the Dirac algebra to express the quark field in terms of its 
light-cone components. Notice that only the dynamically independent "good" 
light-cone components occur. If we make a momentum (k +, k . )  decomposition 
of ¢ and separate helicity states, we find, 

1 / d 2 k ± ( P i R t ( x p ,  k±)R(xp, k .  ) + Lt(xp, k±)L(xp, k i ) lp}  ' (4.44) fl(x) -- x 

This is the parton model as illustrated in Fig. 22: fl  is expressed as a sum 

Fig. 22. The classical parton model. 

of probabilities to find a (light-cone quantized) quark with p+ = xp and any 
transverse momentum, summed over helicities and weighted by the phase space 
factor 1Ix. Perhaps the reader is more familiar with the "infinite momentum 
frame" form of the model, where f l  is written as the sum of probabilities to 
find an (equal-time quantized) quark with a fraction x of the target's (infinite) 
longitudinal momentum. The two formulations are equivalent since the boost 
to an infinite momentum frame is equivalent to a light-cone formulation. Since 
(4.44) is valid in any frame, it can be used in (e.g.) the lab frame to provide 
patton distributions which can be associated with quark models.J18] One must, 
however, be careful to remember that the fields in (4.44) are good light-cone 
Dirac components quantized at equal ~+, not equal ~0. 

An identical calculation for x < 0 captures ant±quark operators and leads to 
the standard crossing relation for f l ,  

fl(X) = - £ ( - x )  (4.45) 

where ]1 is given by (4.44) with R --+ Rc and L ~ Lc. The other (spin- 
dependent) quark distributions are explored in the following Section. 

Twis t -Three  Now let us apply the same analysis to the simplest twist-three 
distribution function, 

/ =_ 2Me( ). (4.46) 

Decomposing in terms of ¢ and X, we find 

1 / ~e,~,x(p[¢,(Ol~Ox(An ) ÷ xt(O)TO¢(An)lp), (4.47) = 
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which contains the dynamically dependent operator X. If we use the constraint 
to eliminate X we obtain 

e (x )  - -  1 4 M x  / -~ e'~'~ <PI$(O)~± ('xn)¢('xn)IP) + h.c. (4.48) 

So e(x) is really a quark-gluon correlation function on the light-cone. It has no 
simple Fock-space interpretation in terms of quarks alone, despite the apparently 
simple form of (4.46). 

We have happened upon a general (and very useful) result: Every factor of X 
in the light-cone decomposition of a light-cone correlation function contributes 
an additional unit of twist to the associated distribution function, 

¢f¢ ~=~ Twist-2 

¢f X <=~ Twist-3 

XfX ~ Twist-4. 

Likewise each unit of twist introduces an additional independent field in the null 
plane correlator: 

Twist-2 --+ ¢f (0)¢(An) 

Twist-3 -+ ¢f (0)D± (An)¢(#n) 

Twist-4 -+ ¢f (O)Di(An)D± (#n)¢(vn). 

It is as if ¢ had twist-one and X had twist-two. 
Twist-three is tractable, using the methods that have been developed in these 

lectures. Twist-four requires a more extensive analysis based on operator product 
expansion methods developed during the 1980's. [39, 19]. With these general tools 
in hand, we turn in the next section to the analysis of the specific distributions 
which appear in deep inelastic scattering of leptons. 

5 D e e p  I n e l a s t i c  S c a t t e r i n g  

a n d  G e n e r a l i z e d  D i s t r i b u t i o n  F u n c t i o n s  I I  

In this section we use the tools developed in Sect. 3 to classify and interpret 
the quark distribution functions which appear in the analysis of DIS. The topics 
will include the classification and patton interpretation of the three leading twist 
quark distribution functions; a discussion of the physics of the less well known 
transversity distribution, hi; a review of transverse spin in hard processes; a 
short digression on higher spin targets and gluon distribution functions; and a 
summary of the physics associated with the twist-three transverse spin distribu- 
tion, g2. 
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5.1 Hel ie i ty  Ampl i t udes  

Part of the task is simply to enumerate the independent distribution functions 
at twist-two and twist-three. This is Simplified by viewing distribution func- 
tions as discontinuities in forward parton-(quark or gluon) hadron scattering. 
Suppressing all momentum indices, each quark distribution can be labeled by 
four helicities: a target of helicity A emits a patton of helicity A which then 
participates in some hard scattering process. The resulting parton with helic- 
ity A' is reabsorbed by a hadron of helicity # .  The process of interest to us is 
actually a u-channel discontinuity of the forward parton-hadron scattering am- 
plitude .AAX,A,A, as shown in Fig. 23. Note the ordering of indices - although A 

A A' 

A 

Fig. 23. Helicity structure a) of the parton-hadron forward scattering amplitude; b) of 
the u-channel discontinuity which contributes to a patton distribution function. 

and )~' are the incoming helicities, it is convenient to label the amplitude in the 
sequence: initial hadron, struck quark, final hadron, returned quark. 

Since the parton-hadron amplitude results from squaring something like 
( X I ¢ I P S ) ,  the amplitude must be diagonal in the target spin. However spin 
eigenstates (in particular, transverse spin eigenstates) are linear superpositions 
of helicity eigenstates, so the {.4} do not have to be diagonal in the target 
helicity. Only forward scattering is of interest, so the initial and final helicities 
must be the same, 

A +  

Also, the parity and time reversal 
respective constraints on the {A), 

.~AA,A' X' 

.~AA,A' A' 

A' = # + A. (5.1) 

invariance of the strong interactions place 

= A - a - x , - a , - ~ ,  (5.2) 

= .AA, A,,AA • (5.3) 
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Clearly the helicity counting outlined above applies equally well to good and 
bad light-cone components of quark or gluon fields. Therefore we can use it to- 
gether with the methods of the previous section to enumerate quark distribution 
function through twist-three. To work through twist-three we will have to con- 
sider the case of one good and one bad light-cone component. We will identify 
any bad light-cone fields in helicity amplitudes by an asterix on the helicity la- 
bel. Thus Ao~_ 01. corresponds to emission of a good light-cone component and 

2 '  - -  

absorption of a ~ad one. 

5.2 Quark Distributions in Targets with Spin-0, 1 /2  and 1 

Spin-0 Target  Only A -- 0 is available. Parity equates Aol,o! and ,4 o 1 0 1. 
5 ~ . - - 5 ,  - - 5  

Time reversal equates Aol o!* and J[o!* o!. So there is only one dmtribution 
5 ~  2 2 J 2 . . 

function at twist-two and one at twist-three. The twist-two function is none 
other than fl  associated with the bilocal operator ¢(0)~¢(An) and conserves 
quark chirality ("chiral even"). The twist-three function is e, associated with 
the scalar bilocal operator ¢(0)¢(An) and flips quark chirality ("chiral odd"). 
These properties are summarized by Table 1. 

Table 1. Quark distributions in a spin-O hadron through twist-three. 

Twist A A A' A' Chirality[ 
Two 0 1/2 0 1/2 Even 

Three 0 1/2" 0 1/2 Odd 

S p i n - l / 2  Target  In the spin-l/2 case, for each twist assignment there are three 
independent helicity amplitudes. The reader may wish to verify that parity and 
time reversal invariance relate the many helicity amplitudes to the six listed in 
the table below (through twist-three). We leave the interpretation of these six 

Table 2. Quark distributions in a spin-l/2 hadron through twist-three. 

Fwist A )~ A' )~' Chirality 
Two 1/2 1/2 1/2 1/2 Even 
Two 1/2-1/2  1 /2-1 /2  Even 
Two 1/2 1/2 - 1 / 2 - 1 / 2  Odd 

Three 1/2 1/2" 1/2 1/2 Odd 
Three 1/2-1/2" 1 /2-1 /2  Odd 
Three 1/2 1 / 2 " - 1 / 2 - 1 / 2  Even 
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distribution functions for the next section where they are discussed in detail. 

Spin-1 Target  A massive spin-one target has three independent helicity states. 
A new complication appears at twist-three: two helicity flip distributions arise 
which are not related by any of the symmetries of QCD. One can easily check that 
no such complication occurs for spin ½. There is much interesting physics in these 
spin-one structure functions, however time will not permit us to work through 
it here. Instead we refer the interested reader to the original literature.J34, 35, 
41, 42] 

Table 3. Quark distributions in a spin-1 hadron through twist-three. 

Twist A A A' A' Chirality 
Two 1 1/2 1 1/2 Even 
Two 1 - 1 / 2  1 - 1 / 2  Even 
Two 0 1/2 0 1/2 Even 
Two 0 - 1 / 2  1 1/2 Odd 

Three 1 1/2" 1 1/2 Even 
Three 1 -1/2" 1 -1/2 Even 
Three 0 1/2" 0 1/2 Even 
Three 0 -1/2" 1 1/2 Odd 
Three 0 -1/2 1 1/2" Odd 

5.3 Quark  Dis t r ibu t ion  Funct ions  for the  N u c l e o n  

The distribution functions for a spin-½ target deserve special attention because 
protons and neutrons are the principal targets of interest. In Table 4 the quark 
distribution functions for a nucleon target are listed through twist-three. They 
are classified according to their twist (or light-cone projection) and their helicity. 

The distribution functions fl ,  gl and gT are familiar because they can be 
measured in lepton scattering. The others are less well known, but are essential 
to understand the nucleon spin substructure in deep inelastic processes. All of 
them are defined by the matrix elements of quark bilocal operators, 

f dA ixz ~re (PSI~b(O)7.¢(An)IPS) = 2 {yl(x)p u q- M2f4(x)n~}, 

f dA ~x~ ~---~e (PSI¢(O)7,75¢(An)IPS) = 2 {gl(x)puS. n + gT(x),~.l_u 

+M2g3(x)n,S • n} , 

f dA ixx ~ e  (PSI¢(O)C(~n)IPS) = 2e(z), 
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T a b l e  4. Nucleon structure functions classified according to their twist and target 
helicities. 

twist O(1/Q ~-2) Name Helicity Amplitude Measurement 

Two /1 A,½ 1½ +'41-½,1-½ 

Two gl A,½,1½ -- A1_½,1-½ 

Two hi A0½,1_ ½ 

Three e F~ll*,I ½ "~ ~A~I_½,1_ ½ 

Three  hL •1½",1½ -- A1-½,1-½ 

Three  9 T  .,4~ 1 * . i u~ ,*-~ 

Chirality 

Spin average Even 

Helicity difference Even 

Helicity flip Odd 

Spin average Odd 

Helicity difference Odd 

Helicity flip Even 

2-~e <PSI¢(O)ia~/5¢(An)IPS> = 2{h1(x)(S±~,p~ - S±~p~)/M 

+ h~(x)M(p~n~ - p~n~,)S, n 

+ h3(x)M(S±~,n~ - S±~n~)}, (5.4) 

Some twist-four distributions (f4, g3, and h3) appear in these matrix elements. 
However, they are joined by many other quark-quark and quark-gluon distribu- 
tions from which they cannot be separated, so there is no point in keeping track 
of them in this analysis. 

Nucleon  Spin  S t ruc tu re  at  Twis t -Two f l ,  gl and hi are twist-two, i.e. 
they scale modulo logarithms. They can be projected out of the general decom- 
positions, (5.4), 

f l  (x) = / 4r  (Pl~(0)~b(An) ]P> 

= f 
hi(x) = / ~e~'x<PS±l¢(O)[$1,~l'~sC(An)[PS±> (5.5) 

To understand their physical significance - -  in particular, to see why a third 
quark distribution in addition to fl  and gl is necessary to describe the nucleon's 
quark spin substructure at leading twist in the patton model - -  it suffices to 
decompose them with respect to a light-cone Fock space basis. If we use the 
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helicity basis, then 

fl(x) = xl (p]R? (xp)R(xp) + L t (xp)i(xp)[P) 

gl(x) = xl (P~a [R t (xp)R(xp) - L ? (xp)L(xp)[P~a) 

hi (x) ~- 2Re (Pel]L t (xp)R(xp)IP~l) , (5.6) 

in analogy with (4.44), where we have integrated out the dependence on trans- 
verse momentum. Here es and el are unit vectors parallel and transverse, re- 
spectively, to the target nucleon's three-momentum. Clearly f l  and gl can be 
interpreted in a probabilistic way: f l  measures quarks independent of their he- 
licity and gl measures the helicity asymmetry. But hi does not appear to have 
a probabilistic interpretation, instead it mixes right and left handed quarks. 

If instead we use a transversity basis, diagonalizing 71, we find, 

f l  (x) = 1 <plat (xp)a(xp) + ~t (xp)~(xp)IP), 

gl(x) = ~Re(P~sla t (xp);O(xp)]P~3), 

1 
hi(x) = x (Pel I~ t (xp)(~(xp) - Z t (xp)/3(xp)IP~I). (5.7) 

Clearly hi can be interpreted as the probability to find a quark with spin po- 
larized along the transverse spin of a polarized nucleon minus the probability to 
find it polarized oppositely, f l  still has the same interpretation, while now gl 
lacks a clear probabilistic interpretation. Of course the structure here is merely 
that of a 2 ® 2 - spin density matrix, with the assignments fl  ++ 1, gl e+ if3, 
and hi ++ al in the basis of helicity eigenstates. The remaining element, a2, is 
related to hi by rotation about the ~3-axis. In non-relativistic situations, spin 
and space operations (Euclidean boosts, etc.) commute and it is easy to show 
that gl = hl, so hi is a measure of the relativistic nature of the quarks inside 
the nucleon. 

The chirally odd structure functions like h i  (Fig. 24a) are suppressed in DIS. 
The dominant handbag diagram Fig. 24b as well as the various decorations which 
generate log Q2 dependences, (~QCD (Q2) corrections and higher twist corrections, 
examples of which are shown in Figs. 24c-e involve only chirally-even quark dis- 
tributions because the quark couplings to the photon and gluon preserve chiral- 
ity. Only the quark mass insertion, Fig. 24f, flips chirality. So up to corrections 
of order rnq/Q, hi(x, Q2) decouples from electron scattering. 

There is no analogous suppression of hi(x, Q2) in deep inelastic processes 
with hadronic initial states such as Drell-Yan. The argument can be read from the 
standard parton diagram for Drell-Yan, Fig. 25. Although chirality is conserved 
on each quark line separately, the two quarks' chiralities are unrelated. It is not 
surprising, then, that Ralston and Soper [43] found that hi(x, Q2) determines 
the transverse-target, transverse-beam asymmetry in Drell-Yan. 
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L R 
" r 

Fig. 24. Chirality in deep inelastic scattering: a) Chirally odd contributions to hi(z); 
b)-e) Chirally even contributions to deep inelastic scattering (plus L ~-~ R for electro- 
magnetic currents); f) Chirality flip by mass insertion. 

~L R 

Fig. 25. Chirality in Drell-Yan (plus L ~ R) production of lepton pairs . 

5.4 Transverse  Spin in QCD 

The simple structure of (5.6) and (5.7) shows that transverse spin effects and 
longitudinal spin effects are on a completely equivalent footing in perturbative 
QCD. On the other hand, hi was unknown in the early days of QCD when only 
deep inelastic lepton scattering was studied in detail. 
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Not knowing about hi, many authors, beginning with Feynman[44], have 
attempted to interpret gT as the natural transverse spin distribution function. 
Since 9T is twist-three and interaction dependent, this attempt led to the erro- 
neous impression that transverse spin effects were inextricably associated with 
off-shellness, transverse momentum and/or quark-gluon interactions The reso- 
lution contained in the present analysis is summarized in Table 5 where the 
symmetry between transverse and longitudinal spin effects is apparent. Only ig- 
norance of hi and hL prevented the appreciation of this symmetry at a much 
earlier date. 

Table 5. The transverse and longitudinal spin distribution functions through 
twist-three. 

Twist-2 

Twist-3 

Longitudinal Transverse 
Spin Spin 

gl(x,Q 2) hl(x,Q 2) 

hL(X,Q 2) gT(X,Q 2) 

Since experiments to measure hi are being planned, now is the time for 
theorists to make predictions. At this time, however, not much is known about 
either the general behavior of hi or its form in models. Here is a summary, 
presented in parallel with gl for the purpose of comparison. 

- Inequalities: 

Igl(x, Q2)l < fl(x,Q 2) 
Ih~(x, Q2)l <_ f~(x,Q 2) (5.s) 

for each flavor of quark and antiquark. These follow from the positivity of 
parton probability distributions (see (5.6) and (5.7)). Another inequality, 
proposed by Softer[46] has attracted attention recently, 

f~(x, Q2) + 9~(x, Q2) > 2lh~(x ' Q2)I" (5.9) 

valid for each flavor (a) of quark and antiquark. Soffer's inequality is in- 
validated by QCD radiative corrections,J12] in much the same way as the 
Callan-Gross relation, F2 ---- 2xF2. Despite this problem, the inequality may 
prove to be a useful qualitative guide to  the magnitude of hi. A recent dis- 
cussion of QCD radiative corrections to Soffer's inequality may be found in 
[47]. 
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- Physical interpretation: The structure function hi(x, Q2) measures transver- 
sity. It is chirally odd and related to a bilocal generalization of the tensor 
operator, ~a~,vi75q. On the other hand gl ix, Q2) measures helicity. It is chi- 
rally even and related to a bilocal generalization of the axial charge operator, 
~7~75q- Although hi is spin-dependent, it is not directly related to the quark 
or nucleon spin. It would be very useful to have a better idea of the dynamical 
and relativistic effects which generate differences between gl and hi. 

- Sum rules: If we define a "tensor charge" in analogy to the axial vector 
charge measured in f~-decay, 

2Si~qa(Q 2) -(PSl~a°ii75~---~qlo2]PS), (5.10) 

where h a is a flavor matrix and Q2 is a renormalization scale, then ~qa(Q2) 
is related to an integral over h~(x, O2), 

f 5qa(Q2) = dx(h~(x, Q2) _ h~(x, Q2)) (5.11) 

where h~ and h~ receive contributions from quarks and antiquarks, respec- 
tively. The analogous expressions for gl ( x, Q2) involve axial charges, 

2siAqa(Q 2) - (PSlqTiV5 q Q2IPS) (5.12) 

f z qa(Q2) = Q2) + Q2)). (5.13) 

Note the contrast: hi(x, Q2) is not normalized to a piece of the angular mo- 
mentum tensor, so hi, unlike gl, cannot be interpreted as the fraction of the 
nucleons' spin found on the quarks' spin. Note the sign of the antiquark con- 
tributions: ~q~ is charge-conjugation odd, whereas Aq a is charge-conjugation 
even. ~q~ gets no contribution from quark-antiquark pairs in the sea. All 
tensor charges ~q~ have non-vanishing anomalous dimensions [48], but none 
mix with gluonic operators under renormalization because they are chiraUy 
odd and gluon operators are even. In contrast, the flavor non-singlet axial 
charges, Aq ~, a ¢ 0, have vanishing anomalous dimensions, whereas the sin- 
glet axial charge Aq ° has an anomalous dimension arising from the triangle 
anomaly. [49] 

- Evolution: It is worth re-emphasizing that hi has unusual QCD evolution 
properties. All of the local operators associated with hi have non-vanishing 
leading order anomalous dimensions. On the other hand, no gluon operators 
contribute to hi in any order, because hi is chiral odd. So hi is a non- 
singlet structure function - it evolves homogeneously with Q~', but none of 
its moments are Q2 independent. 

- Models: hi and gl are identical in non-relativistic quark models, but differ 
in relativistic models like the bag model - see Fig. 26. 
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Fig. 26. Bag model calculation for hi and gl from [8, 9]. 

5.5 Twist-Three: Physics with g2(~r, Q2) 

There are several reasons to be particularly interested in the transverse spin 
dependent s tructure function, g2(x, Q2) 

1. it can be measured in deep inelastic scattering; 
2. it is unique among higher twist distributions in tha t  it dominates the cross 

section in a specific kinematic domain - -  at 90 ° all twist-two effects decouple, 
see (2.22); 

3. it is related to interesting quark gluon matr ix  elements; 
4. it should obey an interesting sum rules. 

For a review of the properties of g2, see ref. [15] 

O p e r a t o r  P r o d u c t  E x p a n s i o n  The spin structure functions gl and g2 param- 
eterize the antisymmetric part  of the hadronic tensor W ~  as shown in (2.15). 
Applying the methods of Sect. 2 we can relate the moments  of the antisym- 
metric par t  of W ~  to the matr ix  elements of quark operators accurate through 
twist-three. Consider the antisymmetric par t  of the forward Compton ampli tude 
T,~: 

1 [T.~ - T~.] ,  Tt.  ] = 

= <PSIT[I,~](q)IPS), where 

(q) = f d4~eiq'~T(J[~(~)J~] (0)). (5.14) 
g 
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The leading twist (twists-two and -three) contributions come from the series of 
operators 

T[,v]=ie,,,;~,,q:' ~ q"...q'"O{&,...,,,}~,T] Cn(q2). (5.15) 
n:0,2,4... 

with 

~ { , 1 . . . , , }  - in¢7~75D{,  , . . .  D ,~}¢  - traces, * (5.16) 

Here { , } denotes symmetrizat ion and [ , ] denotes ant isymmetr izat ion of the 
enclosed indices. The string of symmetric indices originates in the expansion of 
the bilocal operator  about  ~ = 0, and contraction of each index with q~ selects 
the totally symmetric part .  On the other hand, the index on the 7 - m a t r i x  is 
not symmetrized. Cn(q 2) is the coefficient function and is unity to lowest order. 
Flavor factors such as squared charges are suppressed. 

Equation (5.16) can be split into a totally symmetric part  and a par t  of lower 
symmetry, 

0~{~. . . , , }  -- 0{~,~...,~} + O[~{,d,2...,~}, (5.17) 

where the first te rm has twist-two (dimension n + 3, spin n + 1): 

1 
0{o-,1...,,,} -- n + 1 {eo- { , , . . . ,~ }  + e,,{o.,2..4,,~} + e,2{, ,o- . . . , , , }  + . . . } ,  (5.18) 

and the second term, with no totally symmetric  part ,  has twist-three (dimension 
n + 3, spin n): 

1 {e~{,~. . . , .}  - 0,1{~,2.. . , .  } 
O[~{,d,2...,~} - n + 1 

+ O~{,~.. . , . j  - (~,2{,~...,,~} + "." }. (5.19) 

The proton matr ix  elements of these  operators are 

(PSle{~, I . . . , , }JPS> = { S ~ P ~ I . . . P , n  + S, ,P,~. . .P, ,~  + . . . }  a,~ 
n + l '  

<PSI6)i~{,d,2...,.,}lPS> = {(S~P~I - S ,  IP~)P ,2 . . .  P,,, 
d ,  

+ (S~P,2 - S , 2 P ~ ) P , , . . .  P , ,  + . . . }  ~-~--~. (5.20) 

* The terms denoted "traces" are whatever is necessary to subtract from the displayed 
term in order to render the resulting operator traceless and will be suppressed in the 
following. 
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W a n d z u r a  - W i l c z e k  D e c o m p o s i t i o n  o f  g2 Extracting the relation between 
these matrix elements and the moments of gl and g2 is an exercise in the methods 
of Sect. 2. Substituting these matrix elements into the definition of T[~], writing 
a dispersion relation in terms of gl and g2 and equating terms in the Taylor 
expansion in 1/x in the BJL-limit, we find 

1 

fdxxngl(x, Q2)=4an n = 0 ,2 ,4 , . . . ,  

0 

1 

f 1 n (tin-an)), n = 2 , 4 . . ,  (5.21) dxxn g2(x, Q2) _ 4 n + 1 
0 

Notice that the same operators which determine gl make an appearance in the 
moments of g2. It follows that g2 can be decomposed into two parts, one which 
is fixed by gl, and another - -  the "true twist-three" part - -  associated with the 
operator of mixed symmetry, 

1 

g2(xQ2)=-gl(x, Q2)+ / (5.22) 

Z 

Wandzura and Wilczek proposed this decomposition i n  1977.[50] They went 
further and suggested that g2 might be zero. From another perspective, g2 is the 
interesting part of g2.'It's moments, 

1 
n 

dxxn~2(x, Q2) _ 4(n + 1) d"(Q2)' (5.23) 

0 

are twist-three and measure quark-gluon correlations, as was pointed out by 
Shuryak and Vainshteyn[51]. They showed that the QCD equations of motion 
can be used to trade the antisymmetry of O[~{~1]~,2...~ } for factors of the gluon 
field strength G ~  and the QCD coupling constant g. The result is: 

n- -2  

O[~1.11.2..... } = -~Sn i'~-2¢D.1..D.,G~.,+ID.,+2..D..~_I'/...¢ 
k / = 0  

n - 3  
1 Z i~-3 - ' +2 ~bD~,I..D~,,(D.,+,Ga.,+2)D.,+3..D~,.~ ~7.~ 9'5¢} (5.24) 

/ = 0  

where Ga~ 1_ ~ = 5 ~ a ~ t ,  and Sn symmetrizes the indices #1 . . .  #n. 
Equation (5.24) is quite formidable. A simpler example might help explain 

how manipulation of the equations of motion exposes the interaction dependence 
of higher twist operators. Consider the twist-three operator, 

X~, = CD~,D~.¢ (5.25) 
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as an example. X is clearly twist-three (dimension five, spin no greater than two). 
One might be tempted to make a "parton model" for the matr ix element of X,  
by replacing D~ ~ 0~ and evaluating X in a beam of collinear quarks. That ,  
however, would be a mistake, since application of the identity D~ = ½{7~, ~}, 
and the QCD equations of motion, ~ = ¢ ~ =  0 and [D~, D~] = gG~,~,, yields 

g -  
Xu~ = ~¢Gu~ 7 7~¢- (5.26) 

So it is clear that  X and its matrix elements are interaction dependent and 
measure a quark-gluon correlation in the target hadron. This is a special case of 
a general result that  operators of twist _> 3 can always be written in a form in 
which they are manifestly interaction dependent. In particular one has: 

1 1 - -  p 
0 x2~2(X,  Q 2 )  c< (PSl-~gSm~,2¢G,,m%,2¢ I S). (5.27) 

Model builders or lattice enthusiasts who want to predict g2 must confront such 
matrix elements. 

T h e  B u r k h a r d t  C o t t i n g h a m  S u m  R u l e  A striking consequence of the light- 
cone analysis of g2 is the apparent sum rule,[52] 

1 

f dxg2(x, Q2) = 0, 

0 

(5.28) 

which follows directly from (5.21) with n = 0. If true, the sum rule requires g2 
to have a node (other than at 0 and 1). 

The Burkhardt-Cott ingham (BC) Sum Rule looks to be a consequence of 
rotation invariance. To see this, return to (5.4) and consider the %,75 case in the 
laboratory frame (where S o = 0). First, set S = M~3, contract the free Lorentz 
index with n ~ and integrate overall x, leaving 

dxgl (x, Q2) = (Pe3 Ic/(O)')'3")'sq(O)lQ~ IPea). 

--1 

(5.29) 

Next repeat the process with S = M~I and # = 1, with the result, 

1 

f dxgT(X, Q2) = (P~I 1#(0)7175q(0)lQ2 [P~I). 

--1 

(5.30) 

The right hand sides of these two equations are equal in the rest frame by rotat ion 
invariance, so 

dxgT(x, Q2) = dxgl (x, Q2), (5.31) 
1 1 
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whence 

f~ dxg~.(x, Q2) = 0, (5.32) 
1 

apparently a consequence of rotat ion invariance. 
The subtlety in this derivation is tha t  the integral in (5.32) goes from - 1  to 

1 including x = 0. As we have defined it, g2(x, Q2) is the limit of a function of 
Q2 and u and therefore might contain a distribution (5-functions, etc.) at x = 0. 
Suppose g2 has a 5-function contribution at x -- 0, 

g2(x, Q2) = g~bservable(x ' Q2) -b cS(x). (5.33) 

Then since experimenters cannot reach x = 0, the BC sum rule reads 

~o 1 (5.34) 1 dzg~bS~rvable( x, O ~) = 2 e' 

which is useless. 
This pathology - -  a 5-function at x = 0 - -  is not as arbi t rary  as it looks. 

Instead it is an example of a disease known as a "J = 0 fixed pole with non- 
polynomial residue". First studied in Regge theory,[53, 27] a ~(x) in g2(x, Q2) 
corresponds to a real constant term in a spin flip Compton amplitude which per- 
sists to high energy. There is no fundamental  reason to exclude such a constant.  
On the other hand the sum rule is known to be satisfied in QCD per turbat ion  
theory through order O(g2). The sum rule has been studied recently by sev- 
eral groups who find no evidence for a (f(x) in perturbat ive QCD.[54, 55, 56] So 
at least provisionally, we must regard this as a reliable sum rule. At least one 
other sum rule of interest experimentally, the Gerasimov, Drell, Hearn Sum Rule 
for spin dependent Compton scattering has the same potential  pathology. For 
further discussion of the BC sum rule see ref. [15]. 

T h e  E v o l u t i o n  o f  g2 The following discussion can be regarded as a "theoretical 
interlude" and may be omit ted by the casual reader. 

The Q2 evolution of quark distribution functions is an unavoidable compli- 
cation in perturbat ive QCD. Data  are inevitably taken at different Q2, making 
it difficult to evaluate sum rules (which require data  at some definite Q2) with- 
out some information about  Q2-evolution. At leading twist the subject is well 
understood and we have ignored it. The  evolution of g2 is more complicated. 
Equation (5.4) provides as deceptively simple operator  representat ion of g~,, 

= + 

= / ~ei~(PS±I~b(O)$±7~¢(~n)IQ21PS±) (5.35) 

It looks as though gT is determined by a single operator  which evolves homoge- 
neously. However, the operator  in (5.35) is equivalent to the series of quark gluon 
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operators given in (5.24). Worse still, all these operators mix under renormal-  
ization. The number of operators tha t  mix grows linearly with n. Back in the 
1970's, Ahmed and Ross calculated the anomalous dimension mat r ix  element 
for the evolution of the transverse quark axial current operator  in (5.35).[57] In 
1982 Shuryak and Vainshteyn pointed out tha t  this was but  one element of an 
n x n anomalous dimension matrix[51]. Later Ratcliffe, Lipatov et al. and others 
calculated the full anomalous dimension matrix.[58, 59, 60, 61] 

Underlying this matr ix  renormalization group evolution is a somewhat sim- 
pler pa t ton  picture. The fundamental  objects for studying the evolution of 92 are 
two-variable parton distribution functions defined by double light-cone Fourier 
transforms [7]. 

/ ~ ~ ei~+m(y-~) (PS[4(O)iD"(#n)~I(An)]Q2[PS) = 

= 2ie~n~S~p~G(x, y, Q2) +... 

/ ~dA ~ei~,+il,(v_,)(psiq(O)iD,,(#nli{~/5q(An)lQ, ips ) -_ 

= 2ie,,/3,,~-n~S,,p,.~(x, y, Q2) +... (5.36) 

where . . .  denote other tensor structures of twist greater than  three. The  func- 
tions G(x, y, Q2) and G(x, y, Q2) are generalizations of paxton distributions de- 
scribing the amplitude to find quarks and gluons with momentum fractions x, 
y and x - y in the target  nucleon. They  can be represented diagrammatical ly 
as in Fig. 27. These "higher twist distribution functions" share many propert ies 

Fig. 27. Quark/gluon diagram contributing ~o the two-variable parton distribution 
functions G and G. 

with leading twist. Only good light-cone components and collinear momenta  ap- 
pear - transverse momentum has been eliminated in favor of the interactions 
which generate it. The  variables x, y, and x - y take on only physical values, 
- 1  _< (x, y, x - y) <_ 1, corresponding to emission or absorption of quarks, anti- 
quarks or gluons.[40] 

At any value of Q2, gT(x, Q2) can be projected out by integrating out the 
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variable y, 

dy{G(x,y, Q 2) - G(y,x, Q 2) + G(x,y, Q ~) - G(y,x,  Q2) } gr(x, Q2)= 1 

(5.37) 
The reason for introducing G and G is tha t  they obey natural  generalizations of 
the Gribov-Lipatov-Altarelli-Parisi (GLAP) evolution equations. Schematically, 

dldQ~G(x,y,  Q2) - aQCD ~ l  ~ 1 "G'x '  ' 2r dx'dy'7)(x, x', y, y ) ~ , y ,  Q2) (5.38) 

for some "splitting function", P .  In order to evolve gT from one Q2 to another  it 
is necessary to know G and G as a function of both  x and y. However, measure- 
ment of gT does not supply that  information, gT is, in a sense, a "compressed" 
s tructure function. Information essential to evolution has been integrated out  of 
it. The  associated "open" distributions, G and G evolve simply, gT does not. 

The situation is not entirely hopeless, however. It  appears tha t  the evolution 
of g2 may simplify in the Nc -4 c~ limit, especially at large x.[62] Ali, Braun and 
Hiller showed that  in this limit g2 obeys a s tandard GLAP equation, albeit  with 
non-standard anomalous dimensions. As measurements of g2 improve, theorists 
will be forced to expend more effort to clarify the nature of Q2 evolution of gT. 

T h e  S h a p e  o f  92 With the first measurements of g2 now available,J63] and 
more accurate measurements expected soon, it seems t imely to review model 
predictions. First, here is an agenda of progressively more detailed questions for 
experimenters as they relate to theory 

- Is g2 zero? 
The answer is in on this one: the new SLAC data  show g2 ~ 0. 

- Is f~ dxg2(x, Q2) zero as required by the BC sum rule? 
The SLAC data  are consistent with the BC sum rule, albeit with large errors. 

- If f~ dxg2 (x, Q2) = 0, then g2 must  have at least one non-trivial zero (besides 
x = 1 and perhaps x = 0). Is there just one such node? 
The SLAC data  are consistent with one node, again within large errors. 

- If there is only one non-trivial node, what is the sign of 

~0 
1 

M2[g2] --- dxg2 (x, Q2)? (5.39) 

With  only one non-trivial node, the sign of M2 determines the gross s t ructure  
of g2. If M2 is positive g2 is negative at small x and positive at large x, and 
vica versa if M2 is negative. The Wandzura-Wilczek (WW) contr ibution to 
g2 gives M WW < O. 
The SLAC data  favor M2 < 0. 
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- Is there a signal for .q2 or does the W W  contribution account for all of g27 
The SLAC da ta  agree rather  well with the W W  prediction, however the 
accuracy is such tha t  a fairly significant ~2 te rm would not  yet  be detectable.  
Some observers claim to be able to see a deviation from W W  with M2 > 0. 

- As more accurate da ta  become available it will be possible to subtract  away 
the W W  contribution to reveal 92. 

g2 has been studied in quark models and using QCD Sum Rules. Perhaps 
the most thorough analysis, including QCD evolution, has been performed by 
Strattman.[64] He has taken several versions of the MIT bag model, calculated 
g2 and then evolved the resulting distribution using the method of Ali, Braun 
and Hiller to experimentally interesting Q2. His estimates for the proton are 
shown in comparison with the SLAC data  in Fig. 28. 
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Fig. 28. Data on g2 from the S L A C  E143 collaboration compared with the W W  con- 
tribution and the bag model estimates of  Strattmann. 

His estimates of .~2 are small compared to gWW  and cannot be excluded by 
the existing data. The neutron g2 is very small in quark and bag models for 
the same reason tha t  the neutron's  gz is so small: the correlations of charge and 
spin in the SU(6) symmetric neutron tend to cancel for the neutron. The second 
moment of .q2 has also been est imated using QCD sum rules.J65] Surprisingly 

r proton1 l v 1 2 [ g 2  J negative and ref. [65] finds 1vl 2[g2 ] consistent with zero and ~ r neutron1 
significantly different from zero. Existing da ta  cannot rule out this behavior - -  
we shall have to wait for the HERMES facility at HERA to provide more accurate 
data. g2 depends on quark gluon correlations within the nucleon, which are not 
likely to be perfectly described in such simple models, so these predictions should 
be more as a guide than a prediction of expected behavior. 
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6 T h e  D r e l l - Y a n  P r o c e s s  

Although deep inelastic scattering has been the source of much insight into nu- 
cleon structure, it has many limitations: polarized targets can only be probed 
with electromagnetic currents (neutrino scattering from polarized targets be- 
ing impractical); gluon distributions do not couple directly, but instead must 
be inferred from careful study of the evolution of quark distributions; chiral odd 
distributions like hi decouple. None of these limitations afflict deep inelastic pro- 
cesses with hadron initial states. These include not only the original Drell-Yan 
process, pp ~ t~+X via one photon annihilation, but also generalizations to an- 
nihilation via W + and Z °, and parton-parton scattering resulting in jet produc- 
tion or production of hadrons or photons at high transverse momentum. QCD 
predictions for all of these processes are obtained by combining quark/gluon 
distribution and fragmentation functions with hard scattering amplitudes calcu- 
lated perturbatively. This formalism is treated in standard texts - -  our object is 
to explain how the spin, twist and chirality classification developed in previous 
sections can be applied to Drell-Yan processes. In this section we will treat only 
the "classic" Drell-Yan process, pp --+ ?,* + X -+ ~£ + X. The generalizations of 
our spin/twist/chirality analysis to other processes is fairly straightforward and 
yields interesting predictions for a variety of processes. The original treatment 
of polarized Drell-Yan at this level was made by Ralston and Soper.[43] 

When last we considered Drell-Yan in Sect. 2.4, we noted that the dominance 
of the leading light-cone singularity could be overwhelmed by rapid phase os- 
cillations in the matrix element. Figure 20 shows a contribution to Drell-Yan 
which is obviously proportional to the product of quark distribution functions 
each of which has the form of (4.31). Each oscillates rapidly along the light-cone 
(X e iaP'~,  where P is either of the two external hadron momenta. In this section 
we will use the formalism of the previous two sections to compute Fig. 20, to 
show that it generates large (scaling) contributions to Drell-Yan, and to classify 
them with respect to spin and twist. 

6.1 O p e r a t o r  Analys is  

We begin with the Drell-Yan tensor, W ~ ,  from (3.29), with momenta and spin 
more carefully labeled (and IN labels suppressed): 

W~, = 2 f d4~e~q'~<PASAPBSBIJ"(O)J~(~)IPASAPBSB)" (6.1) 

The dominant contribution for the Drell-Yan process is shown in Fig. 29. From 
the diagram it seems that W~v reduces to a product of light-cone quark correla- 
tion functions, as indicated by the markings on the figure. The essential features 
are 1) that nothing propagates between the two currents, so there is no singular- 
ity as ~ -+ 0; and 2) each current has a quark line landing on each hadron. The 
latter suggests that the diagram can be factored into products of quark-hadron 
amplitudes by making a Fierz transformation in order to couple the spin, color 
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Fig. 29. Dominant contribution to the Drell-Yan process. 
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and flavor indices on the quarks in a more appropriate order. First  we write out 
the currents in terms of quark fields, limiting ourselves to terms symmetr ic  in 
# e+ u (which survive contraction with the lepton tensor, Luv), 

J(~(0)J~}(~) = --~k(O)¢l(~)~)i(~)¢j(O)(17{")kj(17v))it. (6.2) 

Note the - sign from anticommuting quark fields. We wish to recouple indices 
so quarks acting in the same hadron are coupled to one another  - -  ( k j ) ( i l )  
(k l ) ( i j ) .  The color Fierz transformation is simple, 

l k j l , ,  = 1(1},1ij + 2-~-~-), (6.3) 
,'} 

where 1 is the 3 x 3 unit matr ix  in color space. [This result is easily derived by 
multiplying both  sides by the matrices l~j and "~kj, in turn,  and using multi- 
plication properties of the A's.] The second te rm in (6.3) vanishes when mat r ix  
elements are taken in color singlet hadron states. The Fierz t ransformat ion for 
the Dirac matrices is more complicated but  bet ter  known, 

where the omit ted terms are traces of the terms shown explicitly. One is left 
with bilocal light-cone correlation functions of the form: vector x vector, axial 
vector x axial vector and tensor x tensor. The flavor Fierz t ransformation is 
straightforward and is left to the reader. 

After reorganizing the product  of currents to group fields tha t  act in the same 
hadron together,  the matr ix  element in (6.1) factors into the product  of quark 
distribution functions. However, the coordinate interval ~ is not  constrained to 
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be lightlike. In ref. [9] each bilocal matrix element is expanded about the tangent 
to the light-cone defined by the large momentum PA or PB, and it is shown that  
the light-cone contributions dominate. The matrix element in hadron A is a non- 
trivial function of PA" ~ along the surface ~2 = 0 and PB" ~ = 0, while the matrix 
element in hadron B is a non-trivial function of P s  • ~ along the corresponding 
tangent to the light-cone. We refer to ref. [9] for further details. Accepting this, 
W ~  reduces to the product of quark distribution functions, one for hadron A, 
another for hadron B. The V × V, A × A, T × T structure of (6.4) is reflected in 
the structure of the resulting product of distribution functions. The V × V part 
is described by: 

2 a W ~ " =  ( 2 ~ r ) 4 5 2 ( Q z ) E e a f l ( X ) f l ( y ) ( p ~ A p ~ B  ~ " -I-PAPB -- gt~v PA " PB) , (6.5) 

where 

P~ P~ + M~ = - - s  PBt~ (6.6) 

M 2 
P~ = p~ + -~-p~,  (6.7) 

with p2 = pb 2 = 0 and 2pA "PB = s. This result is valid up to corrections of 
order 1 / Q  2 or 1/s .  There are no order 1 / Q  or 1/v/s (twist-three) corrections 
- -  another example of the general result that only even twists appear in spin 
average deep inelastic phenomena. The 5(Q 2)  in (6.5) reflects the fact that to 
leading twist and leading order in Q C D  radiative corrections, it is as though all 
partons move parallel to the parent hadron. Our calculation can only be used to 
study observables that integrate over Qz. Equation (6.5) is the original result of 
Drell and Yan: quarks that annihilate to form a virtual photon of squared-mass 
Q2 and three-momentum Q3 must have x y  = Q2 / s and x - y = 2QS / v"s. 

In the same spirit the A x A contribution is 

a P B  " S A  -g""pA pB) + " • (PASB± + p~S~±) (6.8) 
a R A  " P B  

• } + Ee2ag~(x)g~(Y)Pp: SB , v a "PB ( P ' S A ±  +pBS~4z )  ' 

The first line is twist-two and contributes only when both initial hadrons are 
longitudinally polarized. Not surprisingly, this contribution measures gl ® gl- 
The latter two lines are twist-three, suppressed by the factor S±, and contribute 
only when one hadron has longitudinal polarization and the other transverse. 
It is worthwhile relating the spin, twist and chirality structure of this result 
to the classification scheme developed in Sects. 3 and 4. Products of the form 
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gl ® gl and gl ® gT conserve quark chirality and contribute at orders of 1 / 0  2 
which reflect the twist assignments we made in Sect. 4. Axial vector bilocals can 
only generate gl and gT, So we can be confident that we have not missed other 
contributions. In fact, this result could have been written down a priori, up to 
coefficients of order unity simply by carefully considering the selections rules and 
twist assignments developed earlier in these notes• What is not at all obvious, 
however, is that other twist-three quark/gluon operators, of the form discussed 
in the previous section, and not directly related to gT, do not arise when gluonic 
corrections to the diagram of Fig. 29 are computed. We take up this question 
below• 

Finally, the T × T contribution takes the form, 

W~v = --3 (27r)452(Q±) { [SA± " SB± (p~4p~B + pUAp~ -- gttVpA "PB) 

+ (pA p.) + s ±sg±) ] 1 
- -~  Z e2ha" "ha" " • a I ( X )  i (Y) 

( i  

+ PASA±) (6.9) - " 

(% 

2 a a- , S A ' p B  
(PBSB ± -4- PBS B ± ) . 

J ' ~  p A  * P ~  J a 

Here the first two lines are twist-two - -  they scale (modulo logarithms) in 
the deep inelastic limit. They contribute only when both initial hadrons are 
transversely polarized and provide a leading twist probe of transversity distri- 
butions. The second two lines are twist-three and contribute when one hadron 
is transversely polarized and the other longitudinally. Once again the classifica- 
tion scheme of Sects. 3 and 4 is illustrated. Note, for example, that transverse- 
longitudinal polarization receives contributions from both gl ® gT and hi ® hL. 

Unfortunately things are not quite as simple as they have been presented 
so far. Two questions of gauge invariance arise - -  one straightforward and the 
other rather subtle: 

- The factorization of Wt,, into products of bilocal operators acting in different 
hadrons is not color gauge invariant. Evidence of this is the absence of the 
Wilson link, 

between the quark fields at 0 and ~. The problem is that  we have not included 
those diagrams that represent each quark propagating in the color field of the 
remnants of the other hadron. The same problem was discussed in Sect. 3 for 
the case of deep inelastic scattering, where it is easier to handle because the 
operator product expansion will preserve gauge invariance if treated with 
sufficient care. In this case we must find and analyze the diagrams which 
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restore color gauge invariance through twist-three and be certain that they 
do not generate any contributions to W ~  beyond rendering the identifica- 
tion of Drell-Yan matrix elements with quark distributions functions gauge 
invariant. An example of the type of diagram that does the trick is shown in 
Fig. 30. The interested reader is referred to ref. [9] for details. 

A • A  
m m 

Fig. 30. New c/ass of diagrams, needed to restore color and electromagnetic gauge 
invariance. 

- The results we have just quoted ((6.9), (6.5), and (6.10)) violate electromag- 
netic gauge invariance at twist-three. It is easy to see that the twist-three 
terms do not satisfy W ~ q  ~ = O. Once again the answer lies in diagrams 
like Fig. 30. In this case, when the Wilson link which appears in the bilo- 
cal operator is expanded to first order away from the light-cone, a set of 
contributions with explicit transverse gluon fields arise. Using the equations 
of motion these can be related back to the product of good and bad quark 
fields which define the twist-three distributions gT and hL. With sufficient 
care one finds exactly the terms necessary to restore electromagnetic gauge 
invariance. Once again a fuller discussion can be found in ref. [9]. 

6.2 Polar ized  Drell-Yan: a Br ie f  S u m m a r y  

Since the equations and the analysis in this section have become rather com- 
plicated, it is useful to extract the simple predictions for spin asymmetries to 
provide a summary and to reference the workers who originally derived these 
results. 

In the polarized Drell-Yan process, three cases appear: longitudinal-longitu- 
dinal (LL), transverse-transverse (TT) and longitudinal-transverse (LT), as il- 
lustrated in Fig. 31. If instead of virtual photon production, we had considered 
Drell-Yan production of Z ° or W :e, then a longitudinal, leading twist, parity 
violating single spin asymmetry proportional to gl ® fl  appears. There is no 
analogous transverse asymmetry because the product hi ® f l  cannot conserve 
quark chirality. The longitudinal asymmetry, which was first studied by Close 
and Sivers [66], is given by: 

2 a 

Eo (y) (6.11) 
ALL = Ea  e2 f~(x)f~(Y)" 
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) • 

Fig. 31. Various polarization configurations, studied in the Drell-Yan process. The 
small arrows denote the spin projections of the two nucleons relative to the direction of 
the nucleon beams (long arrows). For one of the nucleons the difference of the up and 
down projections is taken. One distinguishes longitudinal (top), transverse (middle) 
and longitudinal-transverse (bottom) scattering. 

Ralston and Soper first discovered transversity, defined a twist-two distr ibution 
and expressed the transverse asymmetry  as:[43] 

2 a x h a  ATT = sin20 cos2¢ ~ e ~ h l (  ) I(Y) (6.12) 
eafl (X)/1 (Y) l + c o s  20 ~ 2 a a " 

The angles are defined in the lepton center of mass frame. The longitudinal- 
transverse asymmetry  has been investigated by Jaffe and Ji [9] and can be wri t ten 
a s :  

e 2  a x a a XhL (x)hl (Y)) (6.13) 2 s i n 2 0 c o s ¢  M ~,~ ~,(gl( )YgT(Y)-- 
ALT = 

1 + cos 2 0 V / ~  E a  e2f~(x) f~(Y)  

Clearly, it is a twist-three observable, which in principle allows for a measurement  

of hL. 

7 Annihilation and Quark Fragmentation Functions 

As a final application we give a brief introduction to the classification and uses of 
the spin dependent fragmentation functions which determine the distr ibution of 
final state hadrons in deep inelastic processes. There  are strong reasons to want to  
develop a bet ter  understanding of hadron fragmentat ion processes. In Sect. 1 we 
mentioned the possibility of studying the spin s tructure of unstable hadrons like 
the A, p and D*. Another reason is that  pari ty violating processes like W + --> 
qq -+ hadrons provide probes of spin structure unavailable in deep inelastic 
scattering, where the analogous experiment would be neutr ino scattering from 
a polarized target.  A final reason is tha t  the selection of a part icular  hadronic 
fragment can serve as a filter for an interesting quark or gluon distr ibution 
function. The material  in this section is based primarily on refs. [10, 67] and [68] 
where more details can be found. 
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7.1 Single Particle Inclusive Annihi lat ion 

The simplest quark fragmentation function is represented diagrammatically in 
Fig. 32. More complicated fragmentation processes, such as coherent fragmenta- 

~ - 

X S A  ' 

Fig. 32. Quark fragmentation function in a helicity basis. 

tion of several quarks and gluons, do not contribute until order 1/Q 2, beyond our 
interest. First we consider the helicity classification in analogy to Sects. 4.1-4.3. 
In the figure a quark of momentum k and helicity A fragments into a hadron of 
momentum P and helicity A plus an unobserved final state X. The process then 
repeats in reverse as the unobserved system, X, plus the hadron of momentum 
P and helicity A' reconstitute the quark of momentum k and helicity A ~. The 
scattering k ÷ P --~ k + P is forward, i.e. collinear. For definiteness, we take the 
momentum of the quark-hadron system to be aligned along the ~3-axis. Then 
helicity is conserved as a consequence of angular momentum conservation about 
this axis: A - A - A' - A ~. As in deep inelastic scattering, the initial and final 
hadron helicities A and A ~ need not be equal because the hadron need not have 
been in a helicity eigenstate; likewise for the quark. As in scattering, the quark 
lines may correspond either to good or bad light-cone components. 

Some of the results of refs. [11] and [67] are as follows. Quark fragmentation 
functions of the form shown in Fig. 32 and the equivalent gluon fragmenta- 
tion functions (without further active patton lines) are sufficient to character- 
ize hadron production in hard processes, provided: i) one studies leading twist 
(O(1/Q°))  in any hard process, or ii) one studies an effect in deep inelastic lepton 
scattering at the lowest twist at which it arises, and one ignores QCD radiative 
corrections.J67] Each appearance of a bad component of the quark field costs one 
power of V ~  in the deep inelastic limit (i.e. it increases the twist by unity). 
As in scattering, for produced hadrons of spin-I/2, helicity differences are ob- 
served in longitudinal spin asymmetries; helicity flip is observed in transverse 
spin asymmetries. Since perturbative QCD cannot flip quark chirality (except 
through quark mass insertions which we assume to be negligible for light quarks), 
chirally-odd quark distribution and fragmentation functions must occur in pairs. 

Fragmentation functions can be labeled uniquely by specifying the helicity 
of quarks and hadrons and the light-cone projection of the quarks in direct 
analogy to the classification of distribution functions. We denote fragmentation 
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functions in a helicity basis by 4.  Parity invariance of QCD requires: ~xA,x,~, = 
~-~-A,-A'-A'. Time reversal invariance, which further reduces the number of 
independent quark distribution functions does not generate relationships among 
the (.4) because it changes the out-state (PX)out in Fig. 32 to an in-state. As 
in the scattering case, we denote the appearance of bad light-cone components 
by an asterix on the appropriate helicity index. 

As a simple example, consider production of a scalar meson like the pion. 
Through order 1 / V ~  there are three independent fragmentation functions: 
4½0,½0, fi,½o,½*o, and -4½"o,½o. The first is twist-two and scales in the Q2 _._> 

c~ limit, the latter two are twist-three and are suppressed by 1 / V ~  in the 
Q2 _~ oo limit. The first function, A½0,½0, is proportional to the traditional 
fragmentation function D(z, Q2). It has the same twist, light-cone, helicity and 
chirality structure as f l  (x, Q2), so to avoid an explosion of notation we denote 
it by ]l(z,Q ~) [We will follow the same convention for other fragmentation 
functions.]: 

]l (z, Q 2) ~ 4½0,½0 (7.1) 

If we were studying quark distribution functions, the other two helicity ampli- 
tudes would be equal by time-reversal invariance. Here, there are two indepen- 
dent fragmentation functions. 

 l(z, Q A½0,½-0 + A½-o,½o 
 i(z,Q 2) A½o,½"o - A½"o,½o (7.2) 

We have found that the helicity classification of fragmentation functions is iden- 
tical to that of distribution functions at leading twist. At twist-three, however, 
there are more fragmentation functions due to the absence of time reversal con- 
straints. 

The application to spin- l /2  is analogous to the classification of sp in- l /2  dis- 
tribution functions given in Table 2 of Sect. 4.2.2 except that each twist-three 
fragmentation function comes in two forms, one even and the other odd under 
time reversal. We suspect that the T-even functions are more important than the 
T-odd since the latter vanish in the absence of final state interactions. So frag- 
mentation at twist-two requires ]1 (z), gl (z) and hi (z) with helicity, transversity 
and chirality properties identical to the analogous distribution function. The 
only twist-three fragmentation function likely to be of much interest is the spin- 
averaged, chiral-odd, time reversal even function el (z). 

In order to relate particular deep inelastic processes to quark distribution 
and fragmentation functions and to study them in models of non-perturbative 
QCD, it is necessary to have operator representations for them. This formalism 
is developed in refs. [11, 67]. Here we display the results for the three leading 
twist fragmentation functions for a spin-l/2 hadron, and for the twist-three spin 
average function, el. Generalizations to spin-1 can be found in ref. [67]. The 
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generic expression for a fragmentation function takes the form, 

P(z) = Tr r ~  ~ e  (01¢~(0)lex) ( e x l ~ ( A n ) 1 0 )  • (7.3) 

where F~0 stands for an arbitrary Dirac matrix. This result holds under the 
condition that the diagram of Fig. 32 dominates. To obtain ]1, 91 and hi one 
chooses F = yi, yt75 and a~nVi75 respectively, 

1 x ~ f d A - i X l ~  L(z)  = ~ ~-~e  (0t~¢(0)IPX) (PXl¢()m)lO > , 

l~xfd)'-,~,/~ O~(z) = -~ ~--~e (OI#75q.'(O)IPSX> <PSXI¢(An)IO>, 

At twist-three the equations of motions can be used to express the structure 
functions in terms of independent degrees of freedom, quantized at ~+ = O. 
For example one can obtain two expressions for the chiral odd, T-even spin 
independent fragmentation function ~1 (z). One involving !b¢ and another where 
bad light-cone components have been traded for transverse derivatives and gluon 
degrees of freedom, 

1 ~  X f ~ e-'~/~(O]¢(O)[PX)(PX'~b(An)'O) M ~ ( z )  = 

z f dA iXlz ~(z)  = ~ ~ J -~-~re- {(Oli~tl~(O)~b+(O)lPX>(PX]~b+(An)lO> 
X 

- (01¢+ ( 0 ) I P X ) ( P X I ¢ +  (An) i ]~  (An)~[0) }. 

With these ingredients we are now prepared to explore a few applications of spin 
dependent fragmentation functions. 

7.2 P o l a r i z e d  q --~ A F r a g m e n t a t i o n  F u n c t i o n s  f r o m  e + e  - --~ A -}- X 

This section is based on work done with M. Burkardt.[68] In the symmetric quark 
model, the A-baryon has a rather simple spin-flavor wavefunction. All its spin 
is carried by the s-quark, while the ud-pair is coupled to S = 0, I = 0: Au A = 
Ad A = 0 and As A = 1. While the quark model identifies the A-spin with the 
spin of the s-quark, the data on the quark spin structure of the nucleon suggests 
that the actual situation is more complex. If we take the latest SMC/SLAC data 
on the f~ dxg~P(x), combine it with/3-decay data and assume exact .SU(3)flavo,. 
symmetry for baryon axial charges, we find 

1 ( z  - D) = -0.23 + 0.06 A U  A = Ad A = ~ 

= ~ ( ~  + 2D) = +0.58 ± 0.07 (7.5) As A 
,3 
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It would be exciting to test the SU(3)l~avor assumption by observing deep in- 
elastic scattering from a A target. Unfortunately we have to settle for observing 
the A as a fragment in annihilation processes. The parity violating, self analyz- 
ing decay of the final state A makes it particularly easy to study its polarization 
in fragmentation processes. Measurement of the helicity asymmetries for semi- 
inclusive production of A's in e+e - annihilation near the Z ° resonance allows a 
complete determination of the spin-dependent fragmentation functions for the 
different quark flavors into the A. In the event that these could be measured it 
would be very interesting to compare the spin fractions measured in fragmenta- 
tion, A~ A, Ad A, and A~ A, with the predictions, (7.5) in order to get a better 
understanding of the role of spin in the fragmentation process. 

We are concerned here with twist-two helicity asymmetries, described by 
the fragmentation function ~l(z, Q2). For simplicity we adopt a more conven- 

tional parton-model notation where we define daA(L~) to be the probability that 
a left handed A fragments into a left handed quark, etc. Then the unpolarized 
differential cross section for e-e  + -+ A + X is obtained by summing over the 
cross sections for e+e - -+ q~, weighted with the probability dAq(Z, Q2) that a 
quark with momentum ! p  fragments into a A with momentum P. As usual, we z 

suppress the Q2 dependence generated by radiative corrections in QCD, 

d2 a A ~ d~rq A 
-- ~_~ - ~ d q  (z). (7.6) 

q 

There is a single polarized fragmentation function for each flavor of quark or 
antiquark, 

--__ ,4A ( L ) ~q(L) (z) -- d A ~  (z), (7.7) 

and furthermore isospin invariance requires that Aft(z) ---- Act(z) and At(z)  = 

Ad(z), so the number of independent fragmentation functions is reduces to four 
- -  e.g. A~,  A t ,  A~ and A~. 

As an example we quote the prediction for A production in e-e  + annihilation 
via photons. In this case one has to start from polarized e-  (or e +) in order to 
fix the polarization of the quarks. One finds for the helicity asymmetric cross- 
section, 

d2~ e-(L)e+--+A(L)X d2a e- (L)e+-~A(R)X _ o~ 2 [ 5  

d ~ d z  - d f l d z  - 2-~ cos0 t ~ (A~(z) ÷ At(z)) 

1 ] 
+ (7.s) +~ 

J 
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where L, R denotes the helicity of the e-  and the A. So annihilation into a single 
photon allows one combination of the four independent fragmentation functions 
to be measured. As described in ref. [68], annihilation at the Z ° and just off the 
Z ° peak where 7 - Z interference is largest will allow independent detection of 
all four quark and antiquark fragmentation functions. For further discussion of 
this process, backgrounds and experimental possibilities see ref. [68] and recent 
papers by the Aleph and Delphi collaborations. 

7.3 Observing hl(x, Q2) in E l e c t r o p r o d u c t i o n  

This section is based on work done with X. Ji.[10, 67] Chirally odd quark distri- 
butions are difficult to measure because they are suppressed in totally-inclusive 
deep inelastic scattering. So far, the only practical way to determine hi( x, Q2) 
we have discussed has been Drell-Yan production with transversely polarized 
target and beam. 

As an application of the fragmentation function formalism - one of many 
- we show how a chirally odd fragmentation function can be exploited to en- 
able a measurement of hi ( x, Q~) to be obtained in polarized electroproduction 

o f  pious from a transversely polarized nucleon. This is an experiment which 
could be performed at several existing facilities. Related suggestions involving 
semi-inclusive production of A-hyperons and of two pious have been discussed 
previously.J69, 42] The proposal outlined here is simpler since it involves only 
one particle in the final state and does not require measurement of that particle's 
spin. The price we pay for this simplicity is suppression by a power of V / ~ .  

We consider pion production in the current fragmentation region of deep- 
inelastic scattering with longitudinally polarized leptons on a polarized nucleon 
target. The simplest diagram for the process is shown in Fig. 33, where a quark 
struck by the virtual photon fragments into an observed pion plus other unob- 
served hadrons. The cross section is proportional to a trace and integral over 
the quark loop which contains the quark distribution function and fragmenta- 
tion function. Due to chirality conservation at the hard (photon) vertex, the 
trace picks up only the products of the terms in which the distribution and 
fragmentation functions have the same chirality. When the nucleon is longitu- 
dinally polarized (with respect to the virtual-photon momentum), the twist- 
two, chirally even distribution gl ix) can couple with the twist-two chirally even 
fragmentation function ]1 (z), producing a leading contribution O(1/Q °) to the 
cross section. On the other hand, in the case of a transversely polarized nu- 
cleon, there is no leading-order contribution. At the next order, the nucleon's 
transversity distribution hi(x) can combine with the twist-three chirally odd 
fragmentation function ~liz), and similarly gT(x) can combine with the chirally 
even transverse-spin distribution ]l(z). Both couplings produce 1 / V ~  -~ contri- 
butions to the cross section. It is simple to see, however, that Fig. 33 alone does 
not produce an electromagnetically-gauge-invariant result. This is a typical ex- 
ample of the need to consider multi-quark/gluon processes beyond twist-two. In 
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Fig. 33. Single particle inclusive scattering ep --~ ehX. The labels L and R rettect the 
chiral odd nature of hi. 

the  present case (twist-three), however, the contributions from coherent  scat- 
tering can be expressed, with novel use of QCD equations of motion, in terms 
of the distributions and fragmentation functions defined from quark bilinears. 
This is a specific example of another rule quoted in Sect. 6.2: "Par ton  diagrams 
(without further active par ton lines) are sufficient to characterize hadron pro- 
duction in hard processes, provided: one studies an effect in deep inelastic lepton 
scattering at the lowest twist at which it arises, and one ignores QCD radiative 
corrections." The combined result is gauge invariant, as can be seen from the 
resulting nucleon tensor, 

l~r.v = _ie.va# qa [(S" n)p#G1 ( x, z) 4- S±~GT(X, z)] (7.9) 
V 

The two structure functions in 1]¢ ~V are related to paxton distributions and 
fragmentat ion functions, 

1 2 a ^a 0~(=, z) = ~ ~ ~og~ (=).f~ (~) 
G 

1 
£[g~(=)k(~)+ = - 5 - ,  

= e°(z)  1 

where the summation over a includes quarks and antiquarks of all flavors. 
To isolate the spin-dependent part  of the deep-inelastic cross section we take 

the difference of cross sections with left-handed and right-handed leptons, we 
use  

d2Acr--°~2em Et A~ttv~Vi.tv (7.10) 
dE 'd~  Q4 E M N  

It is convenient to express the cross section in terms of scaling variables in a 
frame where lepton beam defines the ~3-axis and the ~1 - ~3 plane contains 
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the nucleon polarization vector, which has a polar angle ~. In this system, the 
scattered lepton has polar angles (~?, ¢) and therefore the momentum transfer q 
has angles (9, ~r - ¢). Then we obtain an expression for the semi-inclusive process 
quite similar to that  for the total inclusive scattering defined by (2.22). 

d4 A~r 
dx dy dz de 

+ cos Cs ina~ / (~  - 1)(1 - y) 

S~e2m [ COS ~(1 -- Q: - Y)GI(z,  ~) 

(GT(X,z ) -GI (x , z ) (1 -2) ) ]  (7.11) 

where ~ = 1 + 4x2M2/Q 2 in the second term signals the suppression by a factor 
of 1 / V ~  associated with the structure function GT. The existence of Gt  in the 
same term is due to a small longitudinal polarization of the nucleon relative to 
q when its spin is perpendicular to the lepton beam. 

Equation (7.11) is the main result of this section. As a check, we multiply 
by z, integrate over it and sum over all hadron species. Using the well-known 
momentum sum rule, 

f l, (7.121 
ha d rons  

and the sum rule, 

fdzS (z) = 0 (7.13) 
hadrons  

which is related to the fact that  the chiral condensate vanishes in the perturbative 
QCD vacuum, we get the result for total inclusive scattering, given in (2.22) The 
similarity between the inclusive and semi-inclusive cross sections suggests tha t  
they can be extracted conveniently from the same experiment. 

The aim of this example was to show tha t  an unfamiliar fragmentation func- 
tion (81) could be employed to obtain a measurement of an interesting, if unfa- 
miliar, distribution function (hi). It  is apparent from (7.11) tha t  we have been 
only partially successful: although the h e distribution for each quark flavor ap- 
pears in (7.11), the sum over flavors couples it to the unknown flavor dependence 
of 8~. Perhaps flavor tagging can be used at large-z to identify the contributions 
of individual quark flavors. For x in the valence region (where one can ignore 
antiquarks in the nucleon), and z -+ 1, the dominant fragmentation, u -4 7r +, 
d --+ r - ,  s -+ K - ,  may allow one to trigger on the contributions of u, d and s 
quarks separately. [70] One might be concerned that  the unknown fragmentation 
function, 81, might not respect the dominant fragmentation selection rules, which 
have only been tested for the spin-averaged, twist-two fragmentation function, 
ill. However, the coherent gluon interactions which distinguish the twist-three 81 
from fil are flavor independent and should not alter the selection rules. Although 
this may be a difficult path to measuring hi,  so are all the others. This one owes 
its existence to our improved understanding of the spin and twist dependence of 
quark fragmentation functions, including the spin-average twist-three fragmen- 
tation function 81. 
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Quark-Gluon  Structure of  the Nucleon* 

K. Rith z 

Physikalisches Institut II, Universit~t Erlangen-Niirnberg, Erwin-Rommel Strai3e 1, 
91058 Erlangen, Germany 

Abstract.  This review is an updated version of the lectures presented at the '92 Banz 
workshop. Originally it also contained a section on deep inelastic scattering at HERA. 
Since this subject is now extensively covered in the review by A. Levy, it has been 
skipped in these lecture notes. They therefore only summarise the actual status of 
unpolarised and polaxised deep inelastic scattering of electrons and muons from fixed 
hydrogen and deuterium targets. 

1 Unpolarised Deep Inelastic Scattering 

The subject of unpolarised deep inelastic scattering is covered in several reviews 
[48, 101, 103, 177, 173], and nice pedagogical introductions can be found in many  
textbooks on particle physics [91, 130, 168, 128, 172, 169]. Therefore I will not 
repeat  all the detailed arguments and derivations but  will restrict  myself to  a 
short summary of the basic formulae and phenomena and will discuss the actual 
status of the field, especially the recent results from the NMC experiment at 
CERN. 

1.1 K i n e m a t i c s  and  Cross  S e c t i o n s  

In deep inelastic scattering experiments one investigates the scattering of a point  
like lepton ~ (electron, muon, neutrino) off a nucleon N (proton, neutron) 

~+N-+ £'+X , 

where the nucleon N is excited to a hadronic final state X with higher mass. 
In lowest order pertubat ion theory the electroweak interaction occurs via the 

exchange of a virtual boson (7, Z°, W+)  • In the following I will discuss mainly 
the electomagnetic interaction, where a vir tual  photon 7 is exchanged between 
a charged lepton and the nucleon, and fur thermore inclusive interactions, where 
only the scattered lepton is detected while the hadronic final state X remains 
unobserved. 

We denote k = (E,  k) and k '  = (E', ~) as the four-momenta  of incident and 
scattered lepton, q = (v, q~) and p = (Ep,p-*) as those of the exchanged vir tual  

* Lectures at the workshop "QCD and Hadron Structure" organised by the Gradu- 
iertenkoileg Erlangen-Regensburg, held on June 9 th- l l th ,  1992 in Kioster Banz, 
Germany 
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Fig. 1. Deep inelastic charged lepton nucleon scattering in the approximation of  one 
photon exchange 

photon and the target  nucleon. Then the process, depicted in Fig. 1, can be 
characterised by the Lorentz-invariant quantities 

q2 = _Q2 _ (k - kl) 2 squared four momentum transfer (1) 

s -- (p + k) 2 squared center of mass energy (2) 

W 2 = (p + q)2 squared mass of the hadronic final state . (3) 

We will only discuss fixed target  experiments,  p = (M, 0), where the lepton 
energies E ,  E ~ are much larger than the lepton masses rnt, such that  those can 
be neglected. In this case we obtain in the laboratory system 

0 = 2EE ' (1  - cos 0) (4) Q2 ~ 4 E E  t sin 2 

s ~_ 2 M E  (5) 
W 2 -~ M 2 "l- 2 M y  - Q2 , (6) 

where 0 is the lepton scattering angle in the laboratory system, v -- E - E ~ the 
energy of the virtual photon transferred from the lepton to the nucleon and M 
the nucleon mass. We can also describe the process by two dimensionless scaling 
variables p .  q v 

Y-- p - - ~ - -  E ' (7) 

Q~ Q~ 
x -- 2p .  q 2Mu (8) 

Here y is the fractional energy-transfer from the lepton to the nucleon, x, the 
so-called Bjorken scaling variable, is a measure for the inelasticity of the process. 
For elastic scattering we have W 2 -- M s and consequently x = 1, for inelastic 
processes W 2 > M 2 and x < 1. It should be noted that  while for elastic scatter- 
ing there is only one independent quanti ty Q2 or v, in the inelastic case v and 
Q2, respectively x and Q2, can be varied independently. 

Q2 is a measure of the transverse size which can be resolved by a virtual  
photon with reduced wavelength ~. This quanti ty is not Lorentz-invariant but  
depends on the reference frame. In the laboratory frame it is (h = c = 1): 

1 1 1 2 M x  
- - ~ - - -  (9) Iql v/~ + Q2 v Q2 
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For example, if x = 0.1 and Q2 = 4GeV 2, one finds ~ _~ 10-2 fm. In the Breit 
frame, where no energy is transferred, the equation simplifies to 

1 
= ~ . (10) 

V¢2" 

If one requires Lorentz invariance, P and T invariance and conservation of 
the lepton current then the deep inelastic cross section in the energy E'  and 
angle 0 of the scattered electron averaged and summed over the spins can be 
written in the form 

d2a - a2 E/L(SY'~'W(S) (11) 
dE'  dr2 Q4 E ~v , 

where 
- -  2 / ~ u  L( s)"" = 2 [k"k" + ~'k'" (k.  k' - m~)g ] (12) 

is the lepton tensor and 

w~) = w~ (~,, Q ~) -g." + q~ ] 

1 / P q u ' ~  (, V~ Pq +W2(v, Q )-~ ~p~' q2 '~ ) \v _ . _ ¥ q )  

(13) 

represents the symmetric hadronic tensor which parametrises our ignorance of 
the form of the hadronic current (for a detailed derivation see [130] Chap. 6 and 
8). In the laboratory system this leads to 

d2a (da) {W2(u, Q2)+ 2Wx (u, Q2)tanZ ~ )  
dE I d ~ 2 -  d-~ Mort 

(14) 

with 
( d a )  4oi2E'2 0 

M o t t  2 "  
= Q4 c°s2 - (15) 

The two structure functions W1 (v, Q2) and W2(v, Q2) are the inelastic ana- 
logues to the electric and magnetic formfactors in elastic scattering from e.g. 
nucleons or nuclei, which in the Breit frame, where no energy but only momen- 
tum is transferred, can be interpreted as the Fourier-transforms of the spatial 
charge and magnetic distributions. From the measurement of the Q2 dependence 
of the structure functions one can (via Fourier transformation) extract informa- 
tion about the spatial distribution of the scattering object. For the determination 
of both W1,2 (v, Q2) it is necessary to perform for each value of v, Q2 several mea- 
surements at different scattering angles 0 and different incident lepton energies 
E. 

For scattering on a spin-0 particle we have Wl(u, Q2) - 0. For elastic scat- 
tering on a pointlike spin-~ particle of mass m* and charge Qf = ef • lel, where 
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the charge distribution is a ~-function and consequently the Fourier transform 
is a constant, i. e. independent of Q2, one obtains 

= ( 1 6 )  

If one introduces the dimensionless structure functions 

F[(v,Q ~) = 2MW[(u,Q 2) = Q2e} M ( 
2m,2 u ~ 1 - -  

2~-~u) 0 2) = = e} (1 O' , (19) 

then these point structure functions display the important property that they 
are only functions of the ratio Q2/(2rn*u) and not of Q2 and u independently. 

1.2 Ear ly  Data~ Interpre ta t ion~ C o n s e q u e n c e s  

Q2 I n d e p e n d e n c e  of  S t r u c t u r e  F u n c t i o n s  

The first deep inelastic scattering experiments were carried out in the late six- 
ties at SLAC, using a linear electron accelerator with a maximum energy of 
25 GeV. Above the resonance region (W > 2 GeV) one observed a cross sec- 
tion which had a much weaker Q2 dependence than for elastic electron nucleon 
scattering or electro-excitation of the A resonance [80]. Fig. 2 shows the ratio 

d2c ~ / d a  
d E ' d ~ /  (d'-~)Mott a~ a function of Q2 at different values of W. It can be seen 
that this ratio depends only weakly on Q2 for W > 2 GeV in clear contrast 
to the rapid drop for elastic scattering. Hence in deep inelastic scattering, the 
structure functions W1 and W2 are nearly independent of Q2 for fixed values 
of the invariant mass W. This experimental observation was the basis of the 
quark-parton model (QPM) of Feynman and Bjorken [73, 74, 107, 108] where 
the deep inelastic scattering process is interpreted as the incoherent sum of elas- 
tic scattering from pointlike charged constituents of the nucleon. These were 
identified as the quarks introduced in the mid of the 60's [120, 188] to explain 
symmetries in hadron spectroscopy. The pedagogical argument goes as follows: 
Let the parton mass m* be some fraction of the nucleon mass M, m* -- xM, 
and qy(x) dx the probability that the patton mass between xM and (x ÷ dx)M 
exists in the nucleon, then with (18) and (19) one obtains the Q2 independent 
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Fig. 2. Electron proton scattering: measured cross sections normalised to the Mort 
cross section as a function of Q~ at different values of the invariant mass W 

structure functions 

j•01 F~ (~, Q~) = E q h ) .  F[ (~, Q~) dx 
/ 

= ~ eixq,(x) = F~(x), 

dx (20) 

and for spin-½ constituents: 

1 
F1 (u, Q2) = 2 ~ e}ql  (x) : F1 (x) . (21) 

! 

Such for scattering on pointlike spin-½ constituents one obtains the Callan-Gross- 
relation [84] 

2xF1 (x) = F2 (x) . (22) 

In Fig. 3 the structure function F2(x, Q2) from the early SLAC data  [48] is 
displayed as a function of x for data  covering a range of Q2 between 2 GeV2/c 2 
and 18GeV2/c 2. The data exhibit scaling: For a fixed ratio x = Q 2 / 2 M u ,  
F~(x, Q2) is essentially independent of Q2. The tiny Q2 dependence will be dis- 
cussed in Chap. 1.3. The ratio 2xF1/['2 is shown in Fig. 4 as a function of x. 
It can be seen that  the ratio is, within the experimental error, consistent with 
unity as expected for scattering from pointlike spin-½ particles. 



Quark-Gluon Structure of the Nucleon 255 

0.4 
F:(x,Q 2) 

0.3 

0.~ 

0.1 

0 
0 

i I ~ I" ' I i I 

~ 2 GeV2< Q2< 18 GeV 

% : 
i I i I i I i ¢ %  - -  

0 . 2  0.4 0.6 0.8 
X 

Fig.  3. The structure function F2 of  the proton versus x, for Q2 between 2 GeV 2 and 
18 GeV 2 
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Fig.  4. S L A C  data for 2xF1/F2 versus x 

In  the  der iva t ion  of (20), (21) we have  used the  a s s u m p t i o n  t h a t  the  qua rk  
mass  is a f rac t ion  x of  the  nucleon mass .  General ly ,  on the  l ight  cone, x is defined 
as  

q q ~ / . ~  + p~2 + p~2 + Pz ~ Po + Pz _ (23) 
x - P~o + Pz N ~ / M 2  + pN2 + Pz N 
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where mq is the quark rest mass, pq is the quark momentum in z direction, pq 
its transverse momentum, pz N the corresponding nucleon longitudinal momentum 
and pq, pN are the quark and nucleon energies. For a nucleon at rest it follows 

q 
x -  meffM with mei~q = v/rn~ + pq2 , (24) 

while for a fast moving nucleon 

= P~ (25) x p N ,  

i.e. x is the fraction of the nucleon's light cone momentum carried by the quark. 
Consequently we define qf (x) as the quark momentum distribution or the quark 
number density for a quark of flavour f and light cone momentum fraction x. 

In our present understanding the nucleon consists of the valence quarks re- 
sponsible for its quantum numbers and a sea of quark-antiquark pairs continu- 
ously created as virtual particles from gluons and annihilated to gluons, the field 
quanta of the strong interaction. Taking this into account we write 

f~(~, ¢2) = ~_, e}~ (qs(~, #~) + ¢J(~, ¢~)) (26) 
I 

Using the Jacobian 

d2a u d2a 1 d2a u 7r d2o " 

dQ 2 dx x dQ2du 2 M E x  dxdy x E E '  dE 'd r /  

we obtain the cross section in x and Q2: 

(27) 

dQ 2 d x -  Q ~  1 - y  2E ] x 

V i r t u a l  P h o t o n  C r o s s  S e c t i o n s  o" L a n d  ~rT, R 

The cross section can alternatively be described in terms of the absorption cross 
section for longitudinally (aL) and transversely (aT) polarised virtual photons 

d2vr 
dx dQ 2 - F (aT + EaL) • (29) 

F describes the flux of virtual photons and ~ is the degree of transverse polari- 
sation of the virtual photon: 

( (  1 2m~ Y + ~ 2  ~ 1 -y  (30) ~= : + 5  1-  Q~ ] : : ~ = ~ /  _ : ; ; ~  
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Often the structure function F1 (x, Q2) is replaced by the ratio of these cross 
sections 

R (x ,Q 2) - oL (x, (31) 
OT (x,  Q2) • 

In the Bjorken scaling limit longitudinally polarised photons do not interact 
with spin-½ quarks and consequently aL(X, Q2) = 0 and R(x, Q2) = 0 in this 
limit. 

R(x, Q2) can also be expressed in terms of F1 and F2: 

F2 (x,Q 2) (1 + 9~_) _ 2xF1 (x,Q 2) FL (x,Q 2) 
R(x, Q2) = 2xF1 (x, V2) - 2xF1 (x, V2) ' (32) 

where FI~ (x, Q2) is called longitudinal structure function. We then can write the 
cross section (28) also in the form 

d2a 

dQ 2 dx 
4~ra2F2(x,Q 2) 
Q4 x 

• 1 - y - ~ 5 +  1 - Q 2 ] . 2 (  1 
y2+  ) 
+ a (x, Q2)) 

(33) 

P r o t o n  a n d  N e u t r o n  S t r u c t u r e  F u n c t i o n s  

In the quark patton model the proton is composed of two valence up (u) quarks 
(eu = 2) one valence down (d) quark ( e  d ---- _1)  and a 'sea' of quark-antiquark 
pairs, quantum fluctuations of the strong interaction. At the time of the SLAG 
measurements only the up, down and the strange (s) quark (es = - ~ )  were 
known and therefore we will use only these three quarks in the argumetation of 
this paragraph. At higher beam energies as used later in the muon experiments 
(E~ g 550 GeV) also the c-quark has to be taken into account, while the b- and 
t-quarks are so heavy that at the presently available energies for fixed target 
experiments their contribution to the structure functions can be safely neglected. 
In the following we will use u(x, Q2) for the momentum distribution qu(x, Q2) 
of the u-quarks and so on. uv(x, Q2) is the valence part of this distribution, 
Us (x, Q2) the corresponding sea part and fi(x, Q2) the u-antiquark distribution 
which only contributes to the sea. Since quarks and antiquarks are always created 
from gluons in pairs of the same flavour we have 

us(x, Q2) _- fi(x, Q2) , ds(x, Q2) __ d(z, Q2) , ss(x, Q2) __ g(x, Q2) . 
(34) 

For brevity we will omit the Q2 dependence of these distributions in the subse- 
quent formulae, we will discuss it explicitely in a later chapter. 

The following sum rules hold for the proton 

1{uP(x) - ~P(x)} dx = u~P(x) dx = 2 (35) 
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f01{ f0' dP(x) - dP(x)} dx = dP(x) dx = 1 (36) 

f0 1(u~(~) - ~,(~)} dx 

fo l{dP(x)  dx (37) aP(x)} 

= {Ss(X) - S(x)} dx = 0 . 

From (20) we then  obtain  for the pro ton  

(dP(x) + ap(x))  + 4 (up(~) + ~,(x)) + 6 ~ (s(~) + ~(~)) 
1 1 FP ( x ) = -~ 

4 p 1 p ldP(x)+l , (x ) )  (38) = ~u~(x) + -~dv(x) + 2 ( 4fip(x) + 

The neutron counterpar t  is 

~F~(x) = 4 n i n  9an(x) 9~(~)) ~Uv(X ) q- ~dv(~ ) q- 2 (gu.n(~)-}- q- (39) 

As neutron and proton are members  of an isospin-doublett  their  quark con- 
tent  is related and we have 

(40) uP(x) = dn(x) - u(x),  dP(x) = un(x) - d(x) , 

which leads to 

1 , 1F~(x) = dr(x)  + ~Uv(X) + 2 d(x) + ~fi(x) + ~(x) (41) 

F p (x )  -- F ~  ( x ) ,  V a l e n c e  Q u a r k s  

Substract ing (38) and (41) one obtains 

1 2 1FP(x) -~F~(x)= -~(Uv(X)-dv(x))+-~(fi(x)-d(x)) (42) 

Thus if, and only if the sea is flavour symmetr ic ,  i. e. fi = d, then the contr ibut ion 
from sea quarks drops out and (42) contains only valence quark distributions.  

In Fig. 5 the early SLAC da ta  for FP(x) - F~(x) are displayed as a function 
of x. The distr ibution falls to zero for x -4 0 and x -4 1 and has a m a x i m u m  
around x -- ½. This  behaviour  has often been interpreted as result ing f rom 3 
valence quarks, each carrying in mean  ½ of the nucleon m o m e n t u m  and the 

1 then washed out by the Fermi mot ion  sharply defined m o m e n t u m  at  x = 
of the quarks inside the nucleon. This in terpreta t ion is wrong. As we will see 
later the distributions Uv and dv each peak at x values around 0.17 and the 
peak  at x = ½ accidentally arises from the different x dependence of these two 
distributions. 
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G o t t f r i e d  S u m  R u l e ,  Q u a r k  C h a r g e s  

By integrating (41) over x and using (35) and (36) we obtain 

f01 (F2(x) 1 
SG = x dx = ( 2 -  1) + ~ (fi(x) - a(x)) dx 

1 
f o r  = a ( x )  . 

3 

(43) 

This is the Gottfried Sum Rule [126]. An early determination of this integral 
from the da ta  shown in Fig. 5 resulted in SG --- 0.28±? [76], a result very near 
to the expected value of ½. The '?' takes into account the uncertainty of the 
extrapolation of the data  for x -+ 0, which has a large weight due to the factor 
l~ in the integral. Apart from this uncertainty the result agrees reasonably well 
with the expectation ~1 and one could conclude that  the charge numbers +~2 and 

1 have been correctly attr ibuted to the u- and d-quarks. We will discuss in 3 
Chap. 1.3 that  the Gottfried integral S~ determined from recent high precision 
data  is indeed substantially smaller than  ½. This does not change the conclusion 
about the quark charges but is being interpreted as an indication tha t  the light 
quark-antiquark-sea is not flavour symmetric and that  fi < d. 

F~ (~) / F  p ( x ) ,  S e a  Q u a r k s  

If one makes the simple assumption that  the sea is completely flavour symmetric 
fi(x) -- d(x) = g(x) -- S(x), which in fact is not true for the light sea, as 
mentioned above, and wrong for the strange sea, since we know from neutrino 
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scattering that  ½ (fi(x) + d(x)) _ 2~(x) [103, 173, 65], then one obtains from 
(41) and (38) 

F~(x) 4dr(x) + Uv(X) + 12S(x) 
- -  - = r . ( 4 4 )  
FP(x) dr(x)  + 4uv(x) + 12S(x) 

We can distinguish 4 different cases: 

- for S(x) - 0 (no seaquarks) and uv(x) = 2dr(x)  the ratio would be 2 /3  for 
all x 

- for S(x) - 0 and Uv(X) --- 0 it would reach the quark model upper bound 
r = 4  

- for S(x) - 0 and dr(x)  -- 0 it would reach the quark model lower bound 
r = 1/4 

- if there would be no contribution from the valence quarks but  only the sea 
quarks, uv(x) = dv(x) = 0, then r = 1. 

Figure 6 shows the early experimental  data. The neutron s t ructure  function 

FF 

1.0 

0.8 

0.6 

0.4 

0.2 

- .  ~i~__l Sea domilnates I I -- 

I I I I 
0 0,2 0,4 0,6 0,8 
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1.0 

ror F~_ / G  v e r s u s  Fig. 6. Early SLAC data en ep 

F~(x) falls off with x more steeply than  FP(x) and is approximately given by 
[77] F~(x) ~_ (1 -0.75x)FP(x) .  The ratio F~(x)/FP(x) approaches 1 for x -+ 0, 
i.e. at very low momenta  one observes dominantly sea quarks, and for x -+ 1 
it approaches the quark model lower bound of 1/4, i.e., if a quark carries a 
very large momentum fraction then it is the u-quark in the proton  und the 
d-quark in the neutron, the quark which carries the quantum number  of the 
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corresponding nucleon. The d-quark distribution falls off faster with x than the 
u-quark distribution. Sea quarks dominate at low x. 

Missing Momentum, Gluons 

Finally, after having discussed the difference and ratio of neutron and proton 
structure functions, we can get another important information about the internal 
structure of the nucleon by looking at the integral over their sum. If there are 
no nuclear binding effects then the structure function F N per nucleon for the 
deuteron is given by the sum of the structure functions for a free proton and a 
free neutron divided by two: 

1 (F~(x) + F~(x)) (45) FN(x)=Fd(x)=~ 

We then obtain 

F2N(x) = 5 x  (u(x) + ~(x) + d(x) + d(x) + s(x) + g(x)) 

1 
- ~  (six) + ~(x)) (46) 

5 (qj(x) + 
/ 

The integral of FN(x) is taken over all quark momenta weighted by their 
distribution functions and squared quark charges; hence, if the whole momentum 
of the nucleon would be carried by its charged constituents, the quarks, the 
integral would (apart from the small correction due to the s-quarks) yield the 
mean squared quark charge 

1F~(x)dx = x~_,(qf(x ) + qf(x)) dx -- 18 " 
f 

Experimentally one finds only about 50% of this value. (The same result 
one obtains in neutrino nucleon interactions, see below). Thus roughly only half 
of the nucleon's momentum is carried by the charged quarks. The other half 
is carried by particles interacting neither electromagnetically nor weakly. They 
are identified with the gluons, the field quanta of the strong interaction [113]. 
This observation was the starting point of Quantum Chromodynamics (QCD), 
the field theory of the strong interaction. Consequently the momentum sum rule 
(47) has to be modified: 

[ . - -~ (q / ( x )  +qf(x))+g(x) xdx = 1 . (48) 
I 

Here g(x) is the momentum distribution of gluons inside the nucleon. 
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Neutrino Scattering, Separation of  Valence and Sea Q u a r k s  

Until now we have only discussed charged lepton scattering. Valence- and sea 
quark distributions can not be separated in a direct way by these experiments 
alone: the virtual photon just couples to the charge of the quarks independent 
of their flavour. This is different in neutrino and antineutrino scattering. The 
charged current weak interaction takes place between members of the weak 
isospin dubletts which are lefthanded for particles and righthanded for antipar- 
ticles. Only selected flavour changes are allowed because of charge conservation 
(e. g. vd -+/z-u,  v¢ -+/z-s,  Pd -+ #+u etc.) 

/z2"'"'w+k """ 

Interactions between particles of same helicity (vq, Prt) can be distinguished 
from those between particles of opposite helicity (v~, Pq) due to their different 
energy dependence. In the latter case backward scattering in the center-of-mass 
frame is forbidden by angular momentum conservation and the cross section is 
proportional to (1 - y)2, where y = (E~, - E~) /E, , .  

Quark , j ~  Before the ~ v Anliquark~L" 
S3ffiO " ~ reaction ~ - ~ -'~i ~ $3=-1  

p.- ~L.Quark Scattering ~- ~ Antiquark 
,53=0 . ~ L through ~ ~ "IP" ~ S 3 = - I  

180 ° 

In terms of the individual neutrino quark cross sections the double differential 
cross section per nucleon for scattering on an isoscalar target can be written as 

d2a~" - G ~ M E p  2. 2x ((u + d +  2s) + (1 - y)2(fi + a + 2~)) (49) 
dx dy 7r 

d2(~v - G ~ M E p  2. 2x ((fi + a + 2~) + (1 - y)2(u + d + 2c)) (50) 
dx dy 7r 

Here GF is the Fermi weak interaction coupling constant and p2 is the W prop- 
agator term 

p2 ~ i ~ v  )2  
(51) 

= Ix i~  v +Q2 

Typical y-distributions for u, p interactions are shown in Fig. 7. For neutrino 
scattering the distribution is fiat in y with a small (1 - y)2 admixture arising 
from the seaquarks, for antineutrino scattering the distribution is dominated 
by the (1 - y)2 term from the interaction with the valence quarks, a small y 
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Fig. 7. Differential cross sections da/dy for neutrino and antineutrino scattering off 
nucleons as a function of y 

independent par t  arises from the seaquarks. Valence and sea quark distributions 
can directly be obtained by extrapolations to y = 0 and y = 1. These cross 
sections can also be writ ten in terms of three structure functions Fi(x, Q2): 

d2a v,p M x y ~  - 

2 (52) 

The structure function F3 is a consequence of the V-A structure of the weak 
charged current. The term with F3 has positive sign for neutrino scattering and 
negative sign for antineutrino scattering. Assuming 2xF1 = F2, one obtains by 
comparison of equations (49) and (50) and (52) the expression for the s t ructure  
functions per nucleon for an isoscalar target  in terms of quark distributions 

1 (xFffN(x) + xFffN(x)) = x(u + d - fi - d) = x(uv + dr)  (53) 

18 ,~N/  
F ; N ( x ) = F 2 N ( x ) = x ( u + f i + d + a + c + ¢ + s + ~ ) - - ~ - ~ - v ~  ix) (54) 

~ N  = x(Q + a + 2~) . (55) 

The quark, antiquark and valence quark distributions are separately measurable 
by appropriate combinations of neutrino and antineutrino cross sections: The 
valence quark distribution from 

dav da  ~ 

dx dx ' 

the seaquark distribution from 

3 da~ day 
dx dx 
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The x dependence of F2(x), F3(x)  and q(x) in the Q2 range 10 < Q2 < 
30 (GeV 2) is plotted in Fig. 8 for several high statistics muon and neutr ino nu- 
cleon scattering experiments [167]. There is very good agreement between these 

1 , 8  I I I I 

~1 ~ • o CCFRR 
1.6 ,A • ~ CDHSW 

" °  

1.4 ~F2  • 8CDMS x 18/5 
x BFP x 18/5 
• ~- EMC x 18/5 

1.2 
10 GeV2 < Q2 < I00 QeV 2 

0.6 ~ 
0.4 
0,2 

0 0.2 0.4 0.6 0.8 1.0 
x 

Fig. 8. The structure functions F2, xFs and the seaquark distribution qs versus x from 
high energy neutrino and muon experiments. 

experiments. The main features of the data  to be noticed are: 

- F2~N(x) _~ 18/5F2~N(x), as expected from the quark pat ton model, 
- the seaquark distribution ~vN falls off steeply with x and is negligible for 

x > 0.35-0.4, 
- at larger x only valence quarks contribute to F2, they dominate for x ~ 0.1. 

The most precise measurement for the seaquark distribution ~(x) has been 
obtained by the CCFR experiment at Fermilab [165]. The da ta  is shown in 
Fig. 9 as a function of x at two values of Q2. From detailed studies of di-muon 
events in neutrino and antineutrino scattering one can in addition obtain specific 
information about  the distribution of strange quarks s(x), which only appear  in 
the quark-antiquark sea. The most precise results were obtained by the CCFR 
collaboration [65]. The strange quark distribution is very similar in shape to the 
light antiquark distributions but  suppressed by about  a factor of two. 

2 f x ~ ( x )  dx  = 0 477 +°'°51+°"°17 (56) 
f x (fi(x) + d(x)  ) dx  " -o.oso-0.0so • 

By integrating the cross sections (49) and (50) for neutrino and ant ineutr ino 
scattering on an isoscalar target  over x and y one can separate the contributions 
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Fig. 9. The antiquark distribution ~t(x) versus x from the CCFR neutrino experiment 

of valence and sea quarks to the nucleon momentum [103], since the ratio of the 
total  cross sections can be written as 

a(P) Q + i (V + Q~) 1 + v (57) 
= 1 - 0 =  4 0 '  a(~) (V + Q,) + a 3 +  v 

1 1 
where Qs = (~ = ~ f  f ~ f ( x )  dx, V = f0(uv(x) + dr(x))  dx, and the factor 

arises from the y integration of (1 - y)2. 
From the experimental  results 

a(v ) /Ev  = 0.67 x 10 -us cm2/GeV 

a(~)/E~, = 0.34 x 10 -as cm2/GeV (58) 

f~ F~ N dx ~_ 0.48 

one can derive 

v = 0.31, -~) = 0.265, 
v 

s = Qs + ~)s = 0 . 1 7 ,  (59) 

i.e. valence quarks carry about 31% of the nucleon's momentum,  sea quarks 
about  17% and gluons about  52% at Q2 ~ 10 GeV 2. 

1.3 Deep Inelastic Lepton Nucleon Scattering 
and Pertubative QCD 

Already the very early experiments at  SLAC showed that  the charged quarks 
carry only about  half of the nucleon's momentum and tha t  scaling was only 
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approximately fullfilled, i. e. the structure functions exhibited a small Q2 depen- 
dence not consistent with the picture of pointlike constituents. For some period 
people tried to discuss the scale breaking effects away by inventing modified 
scaling variables [76], but then in the 70's Quantum Chromodynamics (QCD), 
the non-abelian field theory of the strong interaction, was developed which ex- 
plains all the features of the data. In QCD the gluons, the field quanta of the 
strong interaction, are exchanged between particles carrying colour charge. They 
carry simultanously colour and anticolour and can therefore interact with other 
gluons leading to the non-abelian character of the theory. This is an important 
difference to the electromagnetic interaction where the photons, which couple to 
the electromagnetic charge, have no charge and cannot interact with each other. 

In analogy to the elementary processes of QED emission and absorption of 
gluons by quarks, production and annihilation of quark-antiquarks pairs take 
place (see Fig. 10). In addition three or four gluons can couple to each other 

yyy>  
a) b) c) d) 

Fig. 10. The [undamental interaction diagrams o[ the strong interaction: a) Emis- 
sion of a gluon by a quark, b) splitting of a gluon into a quark-antiquark pair, c,d) 
"self-coupling" o[ gluons 

with a coupling strength which in first order pertubative calculation in QCD is 
given as 

4~r 
~!1) (Q2) = ~o ln(Q2 / A~I )) (60) 

and in next to leading order as 

°~2)(Q2)=a~l)(O2) ( 1 - ~ l  lnln(Q2/A~2)) ln(Q2/A~2)) (61) 

2 38 
with f~0 = 11 - 5 n f ,  f~l -- 1 0 2 -  --~n I . (62) 

Here nf  denotes the number of quark types involved at a given. Q2. Since a 
heavy virtual quark-antiquark pair has a very short lifetime and range it can be 
resolved only at very high Q:. Hence n I depends on Q~, with nf  -- 3-6. The 
parameter A(1) (A(2)) is the QCD scale parameter which gives the limit where 
pertubative QCD can be applied. Since typical hadronic radii are in the order 
of ~ 1 fm one expects A to be in the order of 200 MeV. The Q2 dependence 
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of the coupling strength corresponds to a dependence on spatial separation. 
For very small distances and corresponding high values of Q2, the interquark 
coupling decreases logarithmically, vanishing asymptotically. This is the reason 
why at high Q2 the DIS process can be considered as the incoherent sum of 
elastic scattering from free quarks. Due to the process depicted in Fig. 10 and 
the running coupling constant the quark and gluon momentum distributions and 
hence the structure functions become Q2 dependent. Figure 11 is an attempt to 
visualise the underlying physics. At a certain value of Q2 = Qo 2 one measures a 

\o'.fo 
t 

I I - ~-  

/ q ~.x.Q')]-" i 

Fig. 11. Q2 dependence of quark distributions due to increased resolving power of the 
virtual photon with increasing Q2 

quark distribution q(x, Q2). If one increases the space-time resolution by going 
to higher Q2 > Qg, one is able to see that the quark momentum has changed by 
gluon radiation. A quark with momentum fraction x can originate from a parent 
quark with a larger momentum fraction y. The probability that this happens is 

2p.  proportional to as(Q ) qq(~), where Pqq is a so-called splitting function. But 
a quark with momentum x can also arise from a gluon with higher momentum 
y, the probability for this process is proportional to another splitting function 
Pqg (~). Similary the gluon momentum is modified by contributions from quarks 
or ot~er gluons of higher momentum radiating gluons. 

The net effect of this processes is that the structure functions are depleted 
with increasing Q2 at high x and enhanced at low x as it is shown in Fig. 12 
as a function of x for different Q2 and as a function of Q2 for fixed values of x. 
The coupling of g(x) and q(x) and their logarithmic Q2 dependence is expressed 
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Fig. 12. Schematic representation of the deuteron structure function F d as a function 
of x at various values of Q 2 (left), and as a function of Q 2 at constant x (right) 

by the coupled Dokshitzer-Gribov-Lipatov-Altarelli-Paxisi (DGLAP) equations 

a s  1 dy  2 

d lnQ 2 2r j~ --y-( I 

The splitting functions can be calculated in QCD (for details see e.g. Chap. 5.2 
of [172]). 

If one knows the shape of the distributions q(x, Q~), g(x, Q~) at one certain 
value of Q2 _ Qo 2 then from (63,64) one can calculate q(x, Q2) and g(x, Q2) 
at any other value of Q2. Note that perturbative QCD can only predict the 
Q2-dependence of the distributions but not their shape in x. 

It is convenient to split the structure functions into contributions from non- 
singlet (NS) and singlet (S) quark distributions. Valence quark distributions are 
NS distributions. They do not depend on the gluon distribution and their Q2 
evolution is in leading order just given by as (Q2) and the splitting function Pqq. 
Examples are the structure functions xF~ N = X(Uv +dr)  obtained from u, P scat- 

1 (uv - dr) (provided that fi = d). The singlet distribution tering and F~ - F~ = 
is the sum of all quark and antiquark distributions like F2 ~s and approximately 
F~ s . 

Using the notation (a ® b) (x) = f :  dy a ix~Y) b (y) / y  one obtains in leading 
order: 

d O~s(Q 2) ~ qNS 
d lnQ 2 qNS(x, Q2) -- ~ Pqq q9 (65) 

dlnQ: \ g(x,Q") ) 2r Pgq Pgg ) ® (66) 
In next to leading order one obtains similar expressions with more and differ- 

ent splitting functions (there are e.g. also contributions from splitting functions 

[100, 127, 152, 26] 

dq(x, Q2) 

d In Q2 

dg(x, Q2) c~s 
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Pqlr~) which depend on the renormalisation scheme used. (For details see e.g. 
Chap. 5.4 of [172] and [133, 98, 109].) The analysis of the pattern of scale break- 
ing of the structure functions in terms of these equations in principle allows the 
determination of the gluon distribution g(x) and its Q2 dependence and of the 
QCD scale parameter A or of the coupling as(Q2), respectively. Note, however, 
that both ~s(Q 2) and g(x, Q2) enter in the Q2 dependence of qS and are there- 
fore coupled. Thus one usually determines c~8 (Q2) from the logarithmic slope of 
qNS and then g(x, Q2) from the Q2 dependence of qS. 

1.4 Second  and  Th i rd  G e n e r a t i o n  E x p e r i m e n t s  

The experiments at SLAC were continued through the 70's and plenty of high 
statistics deep inelastic data were collected covering a x-range 0.07 < x < 0.9 
and a Q2 range 1 < Q2 < 18 GeV 2. End of the 70's the Tevatron at FNAL and 
the SPS at CEPdN came into operation and a series of high energy neutrino ex- 
periments (CDHS, CHARM, CCFRR) and muon experiments (BCDMS, EMC, 
E665) using lepton beam energies up to 550 GeV have been performed to study 
the quark gluon structure in detail up to high values of Q2 _~ 200GeV 2, to 
compare the data with expectations from QCD and especially to precisely de- 
termine the strong coupling constant as (Q2) and the gluon distribution g(x, Q2). 
The results of these experiments have been summarised in several excellent re- 
views [103, 177, 173]. The data were in reasonable agreement but obviously had 
larger systematic errors than anticipated, since although in general they showed 
the same pattern of scale breaking they differed in details. Especially the two 
CERN muon experiments EMC and BCDMS showed large discrepancies in their 
x dependence as can be seen from Fig. 13, where the Q2 averaged ratio of the 
structure function F2 from EMC and BCDMS is plotted as a function of x. Ob- 
viously at small values of x the EMC data were substantially below and at large 
x above those from BCDMS. 

It also turned out that despite all the efforts the neutron structure function 
F~ and its Q2 depedence was rather badly known. The main reason for this lim- 
ited data quality was that for the determination of F~ a subtraction of deuteron 
and proton data is required. 

= 2 E l  - F f  (67) 

Normally these data were taken under rather different apparative conditions 
(e. g. in different years with different detector performances and efficiencies) and 
since two numbers of similar size needed to be subtracted the data were harmed a 
lot by systematic errors. Therefore mid of the 80's the New Muon Collaboration 
(NMC) at CERN started a new round of experiments using the upgraded EMC 
forward spectrometer [22]. 

The  N M C  E x p e r i m e n t  

The main aim of the experiment, which was performed during the years 1986- 
1989 was to obtain high precision data over a large range of x and Q2 with much 
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Fig. 13. Ratio of the structure functions F~ measured by EMC and BCDMS 

reduced systematic errors compared to the previous experiments. To achieve 
these goals additional tracking detectors were installed, the angular acceptance 
was increased down to very low scattering angles of about 3 mrad, the muon 
energy was calibrated with an additional spectrometer, a separate normalisation 
trigger was installed and a special 'complementary target'  setup was used which 
will be discussed in some more detail below. Hydrogen, Deuterium, Lithium, 
Beryllium, Carbon, Aluminium, Calcium, Iron, Tin and Lead were used as target 
material. From the nuclear targets details of the EMC effect - the modification 
of quark and gluon distributions due to the nuclear environment - were studied. 
k discussion of the nuclear data is beyond the scope of this review and can be 
found e. g. in [38]. The experimental setup is shown in Fig. 14. 

The proportional chambers P4A-P5C were additionally installed to improve 
the track reconstruction at small angles. It turned out that these detectors were 
crucial for the data quality and the understanding of the discrepancy between 
the EMC and the BCDMS data. Detailed studies of reconstruction efficiencies 
showed that the efficiency of the large drift chambers W4-W5 in front of the 
calorimeter/hadron absorber were affected substantially by correlated low en- 
ergy background originating from backward particles from hadron showers in the 
calorimeter/hadron absorber. This background depended on the hadron multi- 
plicities and therefore on u. Despite enormous efforts and extensive Monte Carlo 
studies it was not possible to safely correct the data for this effect. Therefore 
only the central part of the detector covered by the chambers P4-P5 was used for 
the determination of the NMC structure functions. Fortunately data were taken 
at four different muon beam energies (90 GeV, 120 GeV, 200 GeV, 280 GeV) and 
therefore a complete coverage of the kinematic range could be achieved even 
with this geometrical restriction. 
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Fig. 14. The N M C  muon spectrometer 

The Complementary Target Setup 

The complementary target setup of NMC was invented to reduce the systematic 
errors in the comparison of data from different target materials substantially. 
The principle of the setup is shown in Fig. 14 and the top part of Fig. 15 for the 
example of hydrogen (H) and deuterium (D). 

Both a deuterium target and a hydrogen target are in the beam at the same 
time. In position 1 the D target is upstream and the H target is downstream. 
They see the same muon flux 11 but their geometrical acceptance is different 
A~I p # A d°wn due to their different distance from the spectrometer magnet. 
Within short time intervalls this row of targets is interchanged with a second 
one where H and D targets have changed places. In this arrangement both targets 
again see the same muon flux 12, and A~ p # A d°wn. If this procedure is repeated 
frequently enough one can safely assume that (at least for subsequent runs) the 
performance of the spectrometer has not changed and A~p = AD ,up Adown = 
A OW-. 

Calculating the cross section ratio crD/aH from counting rates, acceptances, 
fluxes and target areal densities T one obtaines 

0.~)P 0.down A r u p a d o w n r  ~ d o w n  ~ 0 - d o w n A u p  r ^ ~ u p  
_ _  ~ D  "~ ~ l ' Z H  ~ ' D  ~" ":~ '~H ( 6 8 )  

o.down up  -~  A u p L ~ U p h J d o w n  " a d o w n T  ~ d o w n  ~ r u p  
CrH "" "I"~D " ' H  " I  ~2"LD iVH 
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d2a Af~2Ax Acceptances and muon fluxes cancel and the cross with a = ~ w . 
section ratio simply reduces to 

o.D [ ~j.up/vdown 
/ ' ' D  " 'D a'--~ = ~ ~ / ~  (69) 

¥ ~ ' H  ~'H 

with ~ being the ratio of hydrogen and deuterium densities. 
An example of the vertex distribution of reconstructed events for both  target  

positions is shown in Fig. 15 [23]. 
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Fig. 15. Reconstructed vertex distributions for the two target arrangements 

T h e  P r o t o n  a n d  D e u t e r o n  S t r u c t u r e  F u n c t i o n s  F p a n d  F d 

From the cross sections measured at beam energies of 90, 120, 200 and 280 GeV 
NMC has determined the structure functions F p and F d, first using the large 
angle trigger of the experiment [40] and recently also for the da ta  taken with a 
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small angle trigger at 200 and 280 GeV in 1989 [41]. The extraction of F2(x, Q2) 
from (33) requires (apart from standard radiative corrections and corrections 
for geometrical acceptance, detector efficiency, reconstrution efficiency etc.) the 
knowledge of R(x, Q2). R(x, Q2) can be determined if for the same x and Q2 
data are available for different beam energies (see below), in the other cases 
assumptions about the value of R and its x, Q2 dependence must be made. For 
the data shown below the SLAC parametrisation of R has been used [185]. In 
Fig. 16 and Fig. 17 the measured FP(x, Q2) and Fd(x, Q~) averaged over the 
four beam energies are shown as a function of Q2 for fixed values of x The 
error bars represent the statistical errors, the bands, apart from an overall 2.5% 
normalisation error, the systematic uncertainties. 
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Fig. 16. NMC results for the proton structure function F p 

The data at each x bin have been scaled by the factor indicated in brackets. 
The data cover a range of 0.0045 < x < 0.5, 0.7 GeV 2 < Q2 < 65 GeV 2. They 
exhibit the pattern of scale breaking expected from QCD. At low values of x F2 
rises with Q2, at large values of x it decreases with Q2. The data are in good 
agreement with those of SLAC [186] and BCDMS [67, 68] as shown in Fig. 18 
for the deuteron. 

Data points for z < 0.07 are exclusively from NMC. Recently, final results 
extending down to x = 0.0008 have become available from the fixed target 
muon scattering experiment E665 at Fermilab [142] which also agree well with 
the NMC data in the region of overlap. In Fig. 19 a comparison of the NMC 
data is shown with the results by the H1 [19] and ZEUS [99] collaborations at 
HERA from their 1994 data. Again, especially at low x, the agreement is very 
good and the high Q2 data from HERA and low Q2 data from NMC extrapolate 
nicely to each other. 
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P a r a m e t r i s a t i o n  o f  F p a n d  F d 

The NMC data [40] without  the recent additional low angle data [43] have been 
used together with the results from SLAC and B C D M S  to obtain parametrisa-  
t ions of the structure functions F p and F d and their uncertainities using the 
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15-parameter function [164] 

F2 (x, Q2) = A(x)( ln(Q2/A2) "~/} B(xl/~1+ C(x) 
Q2 ] , (70) 

with Qo 2 = 20GeV 2, A = 0.250 GeV and 

A(x) -- xal(1 - x)a2{a3 +a4(1 - x) +as(1  - x) 2 
+a6(1 - x) 3 +a7(1 - x) 4} 

b3 
B(x) = b l + b 2 x + - -  

x + b4 
C ( x )  = c l x  + c2x  2 + c s x  3 + c4x  4 

(71) 

In the fits, the individual data  points were weighted using their  statistical 
errors only. Five additional parameters  were fitted to the data  to describe relative 
normMisation shifts between the four NMC data  sets taken at different energies 
and the SLAC and the BCDMS data. An additional free parameter  was included 
to account for a possible miscalibration of the scattered muon energy in the 
BCDMS data  and was determined from the fit to be +0.2% for bo th  the proton 
and deuteron data. The parameters of (71) resulting from the fits are given in 
Table 1. 

Table  1. The 

Parameter 
a l  

a 2  

a 3  

a 4  

6 5  

a 6  

a 7  

bl 
b~ 
b3 
b4 
C1 

C2 

C3 

C4 

values of the parameters of (71) for F p and F ff 

-0.02778 
2.926 
1.0362 

-1.840 
8.123 

-13.074 
6.215 
0.285 

-2.694 
0.0188 
0.0274 

-1.413 
9.366 

-37.79 
47.10 

-0.04858 
2.863 
0.8367 

-2.532 
9.145 

-12.504 
5.473 

-0.008 
-2.227 

0.0551 
0.0570 

-1.509 
8.553 

-31.20 
39.98 
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QCD Analysis  of  xFs ,  F p a n d  F d 

The Q2 evolution of a nonsinglet distribution does not depend on the gluon 
distribution and allows a direct determination of as(Q2), using the nonsinglet 
DGLAP evolution equation (65). The presently most precise determination of 
a nonsinglet structure function is the measurement of the structure function 
xF3 (x, Q2) of the CCFR collaboration [170] from neutrino iron scattering. The 
data are shown in Fig. 20. 
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Fig. 20. The structure function xFa from CCFR. 

The analysis has been performed in NLO in the MS scheme including target 
mass corrections. Only data above Q2 = 15 GeV 2 and W 2 > 10 GeV 2 have 
been used for the analysis to exclude nonpertubative effects. They obtained for 
4 quark flavours (nf = 4) the following value of the QCD parameter A: 

A~-~(4) = (210 + 28(stat) ± 41(syst)) MeV . (72) 

With this value of A(M4~) s one obtains 

as(ME) = 0.111 ± 0.002(stat) ± 0.003(syst) ± 0.004(scale) . (73) 

It should be noted, however, that a recent reanalysis [174] of the CCFR data 
results in a substantially higher value of the strong coupling constant, namely 
as(M2)new -- 0.119 ± 0.002(exp) ± 0.004(theor). 

A detailed singlet analysis for F p and F d has been performed for the SLAC 
and BCDMS data [181] and somewhat later also for the NMC data [37] using 
the same computer code which performs a vectorised full numerical integration 
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of the evolution equations in NLO in the MS renormalisation and factorisation 
scheme [98, 115, 116]. The fit was performed simultaneously on the measured 
values of F p, which has both flavour singlet and nonsinglet components and of 
F d = (F p + F~) /2  which is nearly a pure singlet structure function. Since the 
data extend to rather low Q2 targetmass corrections [166, 122] and higher twist 
contributions have been taken into account 

where CHT i8 a coefficient describing the magnitude of 1 / Q  2 higher twist con- 
tributions which arise due to correlations between the quarks. The magnitude 
of the higher twist coefficient CHT for proton and deuteron is shown in Fig. 21 
for the combined SLAC and BCDMS data as a function of x. The coefficient is 
very small for x < 0.4, but gets substantial magnitude for larger values of x. 
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Fig. 21. Higher twist coefficient CHT for proton and deuteron versus x from the com- 
bined SLAC and BCDMS data. 

Thus the Q2 dependence at large values of x and small values of Q2 is sub- 
stantially influenced by higher twist effects. The value of A (4) for this analysis 

MS 
w a s  

A~-~) s = (263 -4- 42) MeV , (75) 

which results in 

as(M~) = 0.113 -4- 0.003(exp) ± 0.004(scale) . (76) 

The NMC data extend to much lower values of x and therefore are much 
more sensitive to shape and size of the gluon distribution g(x) .  The analysis [37] 
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has been performed in two steps. In the first step the value of (~s(M~) = 0.113 
from the above analysis, which corresponds to as(Q02 = 7GeV 2) = 0.240 has 
been fixed to obtain the quark and gluon distributions with best precision. The 
value of Qo 2 was chosen to 7 GeV 2 and the parametrisation used in the fit was 

xq Ns (x, Q~) = Ax  °' (1 - x) ~ , (77) 

xq d (x, Q~) = B x  "r (1 - x) z (1 + bzv + b2v 2) , (78) 

with v = 0.1 - x, 

=g(x,Q~) = C ( 1 - x ) ' ( l + c z w + c 2 w  =+c3w 3) , (79) 

with w = 0.1 ln(1 + eZ°-l°°z). The results for xqNS(x, Q2o), xqd(x, Q2) are shown 
in Fig. 22 for Qo 2 = 7 GeV 2. 
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Fig. 22. a) The non-singlet quark distribution, b) The deuteron quark distribution 
from the NMC analysis 

In Fig. 23 the gluon distribution obtained from this analysis is compared 
to previous determinations from deep inelastic scattering data  from BCDMS, 
SLAC and from CDHSW [70]. 

The NMC data  substantially improve the knowledge of the gluon distribution 
especially at low x in the range 0.01 < x < 0.1. Measurements at HERA allow 
to determine the gtuon distribution down to x values of around 10 -4 (see the 
discussion in the review of Levy in these proceedings [151]). We have mentioned 
above that,  once the shape of the parton distributions is known at one value 
of Qo 2, it is possible to predict their value at any other value of Q2 from the 
DGLAP evolution equations (65) and (66). Figure 24 is a three dimensional 
representation of the deuteron structure function F d, here given as xq(x)  = 
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Fig. 23. The gluon distribution from the NMC analysis compared to those from the 
BCDMS and SLAC hydrogen and deuterium data and the CDHSW iron data. 
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Fig. 24. The Q2 evolution of the deuteron structure function xq(x) and the gluon 
structure function xg(x, Q2) as obtained from the NMC analysis. 

~ f  x (qf(x) + qf(x)) and of the gluon structure function G(x) = xg(x) as they 
emerge from this analysis[71 I. 

The drastic change of these distributions with Q2 is clearly seen. At small 
values of x, F2(x) and G(x) increase rapidly with Q2. At small values of Q2, 
the shape of xq(x) approaches that of a valence quark distribution, since the sea 
quark distribution becomes less and less significant. It is interesting to note that 
at low values of Q2 also the gluon distribution assumes a shape very similar to 
that of a valence quark distribution. 

In a second part of the NMC analysis also a8 (Q~) has been determined from 
the NMC data leaving it a free parameter in the fit. This resulted in a value for 
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the strong coupling constant 

~s(7 GeV 2) = 0.264 ± 0.018(star) ± 0.070(sys) + 0.013(scale) (80) 

which corresponds to 

a8 (M~) n 1 1 ' 7  + 0 " 0 1 1  (81) 
. . . .  " - - 0 . 0 1 6  " 

The Q2 dependences of the data agree over the whole measured x range with 
those predicted by QCD. The average logarithmic slopes d l n F 2 / d l n Q  2 were 
determined in each bin of x separately, both from the data and the QCD fit. 
They are shown for the proton data in Fig. 25. 
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~ , , 0 . 2  
x 

v 

v 
c 
"0 

(],1 

- 0 , !  

- 0 .2  

F,=F,~(1 +H (x)/Q') pNr oMtC n 

0.1 O~ 0.3 0.4 0 . 5  × 

Fig. 25. The logarithmic slopes d In F2 (x, Q2)/d In Q2 from the NMC proton data com- 
pared to those of the QCD fit 

Good agreement is observed over the entire x range. The dotted curves in 
the figure indicate the Q2 evolution due to quarks only and the area between the 
dashed and dotted curves represent the contribution of gluons. It is clear that 
for most of the NMC data the Q2 evolution is driven by the gluon distribution. 

R e s u l t s  for  R(x, Q2) 

While now there is excellent information available for the structure function 
F(x,  Q2), R(x, Q2) is still rather poorly known. This is due to the fact that the 
influence of R(x, Q2) to the cross section (33) is rather small and even negligible 
in large regions of the kinematic domain. Very precise measurements at low 
values of Q2 have been performed by the experiment E140 at SLAC [185]. The 
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data are shown in Fig. 26 as a function of Q2 for different values of x together 
with high Q2 results from the high energy muon experiments EMC [50] and 
BCDMS [67, 68] and the neutrino experiment CDHSW [70]. 
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Fig .  26. The ratio R ( x , Q  2) as a function o[ Q s for different x bins 
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Note that these data only cover a range of x > 0.1. It is obvious that despite 
the enormeous statistics of El40 R(x, Q2) is still not known too well. The short 
dashed line is a QCD prediction, the long dashed line a QCD prediction including 
target mass corrections and the full line a parametrisation to the data. It is this 
parametrisation which is generally used for the determination of the unpolarised 
structure function F2(x, Q2) and the polarised structure function gl (x, Q2)(see 
below). R(x, Q2) is connected with the longitudinal structure function FL(x, Q2) 
by 

R(x, Q2) = F2 (x, Q2) _ Fz(x, Q2) (82) 

The Q2 dependence of FL(X, Q2) is in the next to leading order QCD given by 
the relation [27] 

f .(x,Q - x 2. 21r 
• ~ l d y r 8 " ~ s "  ~2'  (1 g(y, O2)} (83) 

where F s is the singlet structure function and g(y, Q2) the gluon distribution. 
So in principle a measurement of R(x, Q2) or FL(X, Q2) should allow a determi- 
nation of the gluon momentum distribution g(x, Q2). The data shown in Fig. 26 
make clear that at present such an attempt is hopeless. Instead one can use 
parametrisations of FS(x, Q2) and of g(x, Q2) to make a QCD prediction for 
R(x, Q2). 

Recently NMC has presented results for R(x, Q2) from their combined full 
data set averaged over proton and deuteron [43]. Figure 27a shows these results 
for R as a function of x at an average Q2 ranging from (Q2) = 1.4 to 20.6 GeV 2 
for different x-bins. The error bars indicate the quadratic sum of statistical and 
systematic uncertainties. The systematic errors are 1.5 to 3 times larger than 
the statistical ones; they are dominated by the normalisation uncertainty and 
are largely correlated. Also shown is the QCD prediction (full curve) and the 
parametrisation from SLAC data (dashed curve). The agreement is reasonably 
good. 

In Fig. 27b the NMC R measurements are compared to the results from 
BCDMS and CDHSW. Again good agreement is observed. The new NMC data 
improve the knowledge of R for x < 0.1 considerably. 

For the results presented in Fig. 27a the proton and deuteron data have been 
averaged. This is justified since NMC has also demonstrated that the difference 
AR = R d - R p is small [31, 44]. This quantity can be obtained from the ratio 
Fd/F p which, using the complementary target method, can be measured with 
small statistical and systematic errors. We have from (33) 

ad(x ' Q2, E) = F'd 
oP Q:) . 

1 + RP(x, Q2) 

1 + Rd(x, Q2) 
1 + eRd(x, Q2) 

1 + cRp(x, " 
(84) 
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Fig. 27. a) The ratio R = qL/~rT measured by NMC,  averaged over proton and 
deuteron, b) Comparison of  the NMC data with previous results 

The dependence of this ratio on the incident energy E appears only through E, 
the polarisation of the virtual photon (see (30)). Expanding (84) one obtains to 
first order in AR: 

~-~(x, Q2, E) _~ i 

where R z d ---- ~(R -t- RP). 

(1 +/~)(1 + ~/~) " A R  , (85) 

The results for AR [44] are shown in Fig. 28. They cover a range 0.003 < 
x < 0.35. 
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Fig. 28. N M C  results for R a - R v compared with earlier data from S L A C  
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The values of AR are small, no significant x dependence of A R is observed. 
Averaging the data  over x one obtains 

AR = 0.004 + 0.012(stat) -4- 0.011(syst) (86) 

compatible with zero, at (Q2) = 5 GeV 2. In Fig. 28 also the data  from SLAC 
experiment El40  [180] and from a reanalysis of older SLAC data  [185] are shown, 
which agree well with the present value. In Fig. 29 the da ta  are compared with 
predictions from pertubat ive QCD. 
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Fig. 29. Comparison of the NMC data for R d - -  R p to predictions from pertubative 
QCD 

The solid line was calculated using the same gluon distribution for the proton 
and the deuteron, the dashed and dotted ones assuming an increase of xg(x) for 
the deuteron of 10% and 20% respectively. From these results it is justified to 
use the averaged proton and deuteron values for the determinat ion of R shown 
in Fig. 27 and to assume that  g(x) for the proton and the deuteron do not differ 
by more than 10%. 

x a n d  Q2 D e p e n d e n c e  o f  F ~ / F  p 

Structure function ratios can be determined from the measured cross section 
ratios once AR and R are known. As AR is compatible with zero, NMC has 
taken the structure function ratio F d / F  p to be equal to the cross section ratio 
~ d / ~ p  In most of the x bins the data  cover nearly two decades in Q 2  with little 
dependence on Q2. A comparison to results from SLAC and BCDMS for F~/F~ 
is shown in Fig. 30 for three x bins and demonstrates good agreement. 
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Fig. 30. NMC results for the Q2 dependence of F d / F  p compared with earlier data 
from SLAC and BCDMS 

To investigate possible Q2 dependences, the data were fitted in each x bin 
with a linear function of In Q2 

F ~ / F  p = bl + b2 InQ 2 • (87) 

Figure 31 shows the fitted slope parameters b2 as a function of x together with 
the two NLO QCD calculations, including target mass corrections from SLAC, 
BCDMS and NMC discussed above. 

The measured slopes are consistent with these pertubative QCD calculations 
although there may be deviations at x > 0.1 due to higher twist effects being 
different in the proton and in the deuteron, possibly due to nuclear effects in 
the deuteron. Neglecting nuclear effects in the deuteron, the neutron structure 
function is given by 

f~' = 2F~  - F~ , (88) 

and the ratio of the neutron and proton structure functions by 

- r ~  - 1 - -  - (89) 
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Fig. 31. The slope parameter b2 = d( Fd / FP) / d lnQ ~ measured by NMC 

The results for d P Q2 F~/F~ averaged over according to (89) are shown in Fig. 32, 
the da ta  approach one for x -~ 0 and fall down to about  0.45 for x ,~ 0.7. In 
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Fig. 32. NMC results for the structure function ration F~ / F p as a function of 

Fig. 33 results for the x dependence of F ~ / F  p f rom the Fermilab E665 collab- 
oration [8] are compared  to the NMC results. There  is fair agreement  between 
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Fig. 33. Comparison of the x dependence of the NMC data for F~ /F  p with the results 
of $he E665 collaboration 

the two experiments while the accuracy of the NMC result is much higher. The 
average Q2 is quite similar in the region of overlap. The E665 results indicate a 
sizable drop of the ratio for x -+ 0, which could be interpreted as a nuclear shad- 
owing effect in the deuteron. Note, however, tha t  these data  are at very low Q2 
down to values of Q2 < 0.01 GeV 2 where the transverse resolution corresponds 
to the size of the deuteron and any interpretat ion in terms of the quark model is 
questionable. The ratio F ~ / F  p determined using (89) may deviate significantly 

F n p from the free nucleon ratio ( 2/F~ )free due to nuclear effects in the deuteron 
(see e.g. [38]). At small x F2 d may be reduced by shadowing effects which are 
also observed in the real photon cross section on the deuteron ([51, 52, 160, 60]). 
Near x = 1 the effect of the kinematic range for the deuteron extending to x = 2 
and of Fermi motion and possibly other nuclear effects must become apparent.  
Note that  for the region x --+ 1 striking differences exist for predictions of F ~ / F  p 
[85, 18, 111, 161]. In a pertubative QCD framework this rat io should approach 
the value 3 in the limit x -+ 1, while models based on the dominance of a scalar 
di-quark component (ud)s=o in the nucleon predict this ratio to approach the 

1 value Z. 

Higher Twist  Contributions 

We have mentioned before tha t  the N L 0  QCD analysis of the combined SLAC 
and BCDMS data  indicated a substantial contribution to the Q2 dependence of 
structure functions at large x, low Q2 due to higher twist effects. Such higher 
twist effects arise due to correlations between quarks which invalidate the as- 
sumption of the quark par ton model tha t  the deep inelastic cross section is the 
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incoherent sum of cross sections for elastic scattering from free, uncorrelated 
quarks. The measurement of F ~ / F  p allows to investigate whether the higher 
twist effects are identical or different for proton and neutron. If we assume tha t  
they are different then we can write 

.F~ LT~TMC _ 

(90) 

For such an analysis the SLAC, BCDMS and the earlier NMC data  [31] have 
been combined, and for each x bin the logarithmic slope d ( F ~ / F  p ) / d  In Q2 has 
been determined. In Fig. 34 the measured slopes are shown together  with the 
QCD prediction. There are substantial deviations from the QCD prediction. 
Figure 35 shows the result for the difference of the higher twist coefficients 
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Pig. 34. The difference of the higher twist coefficients of proton and neutron from a 
combined analysis of NMC, BCDMS and SLAC data 

C p - C". In the region x > 0.2 the higher twist coefficient of the proton  seems 
to be substantially smaller than tha t  of the neutron. Note, however, tha t  the 
data  show in their x dependence some similarity to the nuclear EMC effect 
where also in the region x _~ 0.65 the modification of quark distributions due 
to nuclear effects is largest. It is therefore not unreasonable to speculate tha t  
this difference is due to nuclear effects in the deuteron. Whether  this is really 
the case can only be tested in future experiments where the spectator  nucleon 
is being tagged and therefore one knows whether the scattering process occured 
on a proton or a neutron. 
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Fig .  35. Dif ference C p - -  C n o f  h igher  tw i s t  coef f icients  for p r o t o n  a n d  n e u t r o n  f rom  
the  c o m b i n e d  N M C ,  B C D M S  and  S L A C  data. 

T h e  G o t t f r i e d  S u m  

We have seen in Chap. 1.2 tha t  the integral over the difference of the proton 
and the neutron structure function F2, weighted by l / x ,  provides information 
about the quark charges and the flavour symmetry  of the quark-antiquark sea. 
For a flavour symmetric sea and quarks with fractional charges + 2  and +½ 
this integral should yield ½, the Gottfried Sum Rule. The nonsinglet s t ructure  
function F p - F~ can be obtained from the structure function ratio F ~ / F  p as 

F p - F ~  = F d 1 - F ~ / F  p (91) 
l Y ' 

with F ~ / F  p = 2 F d / F  p - 1. 

The NMC collaboration has determined this function from their  measured 
ratio F d / F ~  and a parametrisat ion to their s t ructure function F d [39]. The 
results presented here were evaluated at Q2 = 4GeV 2. No corrections were 
applied for target  mass, higher twist or nuclear effects. The difference F p - F~ ~ 

(full symbols and scale to the right) and the Gottfried integral SG = f :  dx' (F~ - 
F ~ ) / x  s (open symbols and scale to the left) are shown in Fig. 36. The value of 
the Gottfried sum at Q2 _ 4 GeV 2 is found to  be 

SG(0.004 - 0.8) = 0.221 =k 0.008(stat) • 0.019(syst) . (92) 

With the most recent data  included the result is [42] 

s~ew(0.004 - 0.8) = 0.2281 -t- 0.0065(stat) , (93) 

agreeing very well with the above value. To evaluate the contributions to SG 
from the unmeasured regions at high and low x, extrapolat ions of F p - F~ to 
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F, n and the Gottfried sum from the N M C  data Fig. 36. The difference F p - 

x = 1 and x = 0 were made which amounted  to 0.001 ± 0.001 for the region 
x > 0.8 and 0.013 ± 0.005(stat) for x < 0.004, where a Regge-like behaviour  was 
assumed. Summing all contributions one obtains for the Gottf r ied sum 

SG : 0.235 ± 0.026 . (94) 

The error is the result of combining the stat ist ical  and sys temat ic  errors in 
quadrature,  and including the effects on the systemat ic  uncertainties of the ex- 
t rapolat ions.  Obviously this result deviates by about  four s t andard  deviations 
from the quark model  expectat ion.  Taking shadowing effects in the  deuteron into 
account, the value of SG would be further reduced to  about  0.223 ~= 0.033 while 
taking higher twist effects into account would increase SG by about  10%. In the 
frame of the quark par ton model one can, taking isospin to be  a good symmetry ,  
explain this result by the assumptions tha t  the light quark-ant iquark  sea is not 
flavour symmetr ic .  One obtains: 

f ( d -  fi) dx = 0.165 ± 0.059 . (95) 

I t  has been pointed out  [176] tha t  the nonper tubat ive  processes of nucleon dis- 
sociation into r - N  and v - A  can lead to such a flavour a symmet r i c  sea. Here 
the process p -+ n -t- ~+ is favored over p --~ A++ ÷ p - ,  which in quark  t e rms  
corresponds to favoring u --+ d + ud over d -+ u ÷ dfi. In another  approach the 
result could be  due to a small admixture  of vector diquarks, wi thout  requiring a 
flavour asymmetr ic  sea. A more detailed investigation of a number  of the above 
effects and a review of the l i terature is given in [144, 110]. 



292 K. Rith 

Determinat ion  of  the Gluon Dis tr ibut ion  

In deep inelastic lepton nucleon scattering one can obtain informations on the 
gluon distribution by three different methods: From the scaling violations of 
the structure functions as discussed above, from inelastic production of J / ~  
particles and from open charm production, i.e. production of D mesons. Theo- 
retically the last process is much cleaner than the second one, but has, however, 
not yet exploited experimentally. Measurements of this channel are forseen by 
the COMPASS experiment at CERN which will start data taking at the end 
of this decade. The production cross section for J/~P mesons by virtual photons 
is thought to be related to the gluon distribution of the nucleon since the pro- 
cess is believed to proceed through the fusion of a photon and a gluon via an 
intermediate charm-anticharm pair [184, 57, 49, 53, 156, 69]. 

C 

p 

Fig. 37. The photon-gluon fusion diagram 

The J / ~  is identified via its decay into #+#-  pairs which has a branching 
ratio of 6%. To distinguish this QCD process from the fluctuation of a photon into 
a vector meson one demands that the J/kO obtaines some transverse momentum 
p± by gluon radiation and carries only a fraction of the energy of the virtual 
photon: z = Ej /¢ /v  ~ 0.9. Under certain assumptions then the cross section for 
these inelastic J / ~ ' s  is proportional to the gluon distribution g(x). In Fig. 38 
the results from EMC [47] and NMC [24] for xg(x) obtained by this method is 
shown. Another method to obtain information about the gluon distribution is 
the production of direct photons with large transverse momentum in pp or pp 
scattering which proceeds via a gluon from one nucleon interacting with a quark 
from the other nucleon. 

Parametr isat ion  of  Parton Dens i t i es  

An important by-product of the QCD studies determining as (Q2) is the extrac- 
tion of patton densities at a fixed reference value of Q02. These then can be evolved 
in Q2 and used as input for phenomenological studies e. g. in hadron-hadron col- 
lisions. For the determination of these patton distributions the results of different 
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Fig. 38. NMC and EMC results for the gluon structure function xg(x) deduced from 
inelastic J/@-production 

types of experiments like deep inelastic scattering, lepton pair production in pp 
and p~ collisions (Drell-Yan-Process), direct photons with large transverse mo- 
menta or charge asymmetries of the decay leptons in W ± production have been 
used as input. One should note however, that these parametrisations have very 
little predictive power for extrapolations in kinematically not yet accessed re- 
gions, since, as we pointed out above, QCD can not predict the x-dependence 
of patton distributions but only their Q2 dependence once the distributions are 
known at a fixed value of Q2. As an example we show in Fig. 39 a comparison of 
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Fig. 39. Comparison of NMC structure function data with a collection of structure 
function parametrisations. 
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the NMC data for F p together with parametrisations which where contained in 
a package from the CERN computer library at that time. The parametrisations 
were all rather similar in the region z > 0.1 where plenty of data existed before 
but differed substantically in the unmeasured region x < 0.1. Clearly the NMC 
data constrain the parametrisations a lot, but again the region at even lower x 
cannot be predicted and has to be explored experimentally by the HERA data. 
Of course the groups, producing their parametrisations, improve them as soon as 
new data have become available. Detailed explanations of these parametrisations 
and the procedures used can be found in [158, 159, 146, 123, 124]. 

2 N u c l e o n  S p i n  S t r u c t u r e  

So far we have only discussed unpolarised deep inelastic lepton nucleon scatter- 
ing which provides important informations about the quark-gluon structure of 
the nucleon and the strong interaction. Additional informations can be obtained 
from polarised deep inelastic scattering. These experiments allow to extract de- 
tails about the internal spin structure of the nucleon (for an early review see 
[134]) which are very important for the understanding of the strong force since 
this has a substantial contribution arising from the chromomagnetic spin part 
of the wavefunction. They are, however, by far more difficult than unpolarised 
deep inelastic scattering experiments since they require both a longitudinally 
polarised electron or muon beam and a polarised target. Therefore the exper- 
imental information is still rather limited. The pioneering experiments [21, 64] 
where performed mid/end of the 70's at SLAC, followed by the EMC muon 
experiment [45, 46] at CERN mid of the 80's. As will be discussed below the 
results of the muon experiment were in disagreement with 'naive' expectations 
from the quark model and were the origin of the so called 'spin puzzle'. A huge 
number of theoretical papers dealing with this subject have been published since 
then, the related physics has been discussed at several dedicated workshops and 
summarised in excellent reviews as e.g. [171, 33, 154]. On the experimental side 
a new generation of polarised deep inelastic scattering experiments has been 
started/performed during the last five years. In the following I will summarise 
the physics, describe details of these new experiments and experimental data 
and will draw some conclusions from the present results. 

2.1 Spin in the Nonrelativistic Quark Model  

Before I discuss the physics of polarised deep inelastic scattering let me briefly 
recall the predictions of the non-relativistic quark model concerning magnetic 
moments and masses of hadrons to make clear why the EMC/SLAC result came 
as a surprise. 

Magnetic  M o m e n t s  

The non-relativistic quark model is rather successful when its predictions for 
baryonic magnetic moments are compared with experimental results. 



Quark-Gluon Structure of the Nucleon 295 

In Dirac theory the magnetic moment # of a pointlike particle with mass M 
and spin-½ is 

eh 
#Dirac---- 2M (96) 

This relationship (and small corrections to it due to higher order corrections 
from QED and QCD) has been experimentally confirmed with high precision for 
both the electron and the muon. 

For the proton and the neutron magnetic moments one obtains experimen- 
tally 

#p = 2.79 ~ N  , (97) 

#n = --1.91#N , (98) 

with 
eh 

# N -  2Mp (99) 

being the nuclear magneton. From this measurement it is evident that  proton 
and neutron cannot be pointlike Dirac particles but must have an internal sub- 
structure. 

In the nonrelativistic quark model the total symmetric SU(6) wavefunction 
of a proton with spin component ms = + ½ relative to the quantisation axis is 
given by [169, 128] 

1 
IPt) = 7--~{ 2 lut ut d$> + 2 luT d$ u1") + 2 Id$ uT ut) 

V~O 
- lut uS d1"> - JuT d$ uS> - Idt ut uS) (I00) 

- luSut at") - lu$ dTuT) - ]at u S  ut)} • 

The neutron wave function is trivially found by exchanging the u- and d-quarks. 

i 
In1") = --~Q{ 2 IHT dt uS) + 2 Id1" uS d~[) + 2 lu$ at HI") 

- Idt as ut) - [at ut as) - IuT at d$) (101) 

- [ d $  a t  u t )  - ] a s  u t  dr) - l u t  d S d t ) }  • 

The proton magnetic moment in the ground state, with l = O, is a simple 
vectorial sum of the magnetic moments of the three quarks 

~t~p ---- ~u ~- ]~u -}- ~d (102) 

and has the expectation value 

~tp = <].~p> = <Xpl ]~p IMp> , (103) 

where Xp is the spin part of the wavefunction. From (103) we deduce: 

2 1 4 1 
~p = ~ (#u -{'- flu -- ]-Ld) "~- ~]-.$d = ~Jt'~u -- ~ d  , (104) 
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where ~u,d are the quark magnetons 

e . ,d .  lel h (lO5) 
# u , d  ~ 2mu,d 

and mu,d the constituent quark masses. Similarly we obtain for the neutron 

4 1 
# .  = ~#d -- ~#u (106) 

and analogously for the ~ (uus) 

4 1 
~ +  = ~#. - ~ ,  , (lO7) 

while for the A, where the spins of the u- and d-quark couple to zero, the spin 
and magnetic moment are determined solely by the s-quark 

#A = #s • (108) 

If we assume the masses of the light quarks to be equal to each other, then we 
have Pu = - 2  ~d and we obtain 

3 
#p = ~#u, /~n = -#u • (109) 

We thus obtain the following prediction for their ratio 

# n  2 
- -  (110) 

#p 3 ' 

which is in good agreement with the experimental result of -0.685. From the 
measured magnetic moments one can deduce the constituent quark mass 

M p  _ 336 MeV . 
m u , d -  2.79 

This result was one of the cornerstones of the development of the quark model 
and was taken as an important proof that the model is correct. 

Experimentally one can determine baryon magnetic moments from magnetic 
resonance or, for the strange baryons, from the precession of the spin in a mag- 
netic field and the decay distribution [81, 132, 167]. 

Table 2 summarises the experimental results and the theoretical predictions 
from the quark model. The agreement is impressive, but one should note that 
there are deviations on the 10-15 percent level, which can not be explained 
consistently with one theoretical ansatz [132]. 

For both proton and ~+ the contribution of the u-quarks alone is already 
2.48#N. The experimental result f o r / ~ +  = 2.458#N is smaller than this value 

1 e and since the charge of the s-quark is - ~ [ [, a meaningless negative mass would 
be required for the strange quark from equation (109) to explain the experimental 
value. Obviously further effects, such as relativistic ones, pion or gluon exchange 
and those due to quark orbital angular momenta, must be taken into account. 
Thus the quark model works reasonably well, but maybe this is just an accident 
and the situation is much more complicated than it looks at the first glance. 
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Table 2. Experimental and theoretical values of the baryon magnetic moments. 

Baryon 
p 
n 

A o 
~+ 
~o 

~o __~ A o 

Eo 

]A/]AN (Experiment) 
+2.792847386 ±0.000000063 
--1.91304275 4-0.00000045 
-0.613 +0.004 
+2.458 4-0.010 

-1.61 4-0.08 
-1.160 4-0.025 
-1.250 4-0.014 
--0.6507 4-0.0025 
-1.94 4-0.22 

Quark model: #/pN 
( 4 ] A u  - ] A d ) / 3  - -  

(4]Ad - -  ] A u ) / 3  - -  

]As 

(4]Au - #s)/3 +2.67 
(2]Au + 2]Ad - -  ps)/3 +0.79 

( f t  d - -  ]Au)/V/3 --1.63 
(4]Ad - -  ]As)/3 --1.09 
(4]A, - ]A~)I3 -1.43 
(4]As - ]Ad)/3 -0.49 

3]A. - 1.84 

H a d r o n  M a s s e s  

T h a t  spin plays an impor tan t  role in QCD can be seen f rom the striking difference 
of the masses of light mesons, where the J = 1 states have much larger masses  
than  their J -- 0 partners.  The pion ~r (spin -- Oh, m~± = 140 MeV) and the rho 
p (spin -- lh,  rnp~ = 767MeV) are composed by the same two quarks and differ 
only by their spin orientation. The  gap between the singlet s ta te  ~r ± and the 
tr iplet  s ta te  p± is about  4.5 t imes the rest energy of the pion, to be compared  
with the small hyperfine splitting in the electromagnetic case where for instance 
the energy difference between the singlet and tr iplet  ls  s ta te  of pos i t ronium is 
about  8 x 10 -4 eV or about  1.6 x 10 -1° t imes the to ta l  energy of the ground 

state. 
Similarly the A+ particle (spin = 3h, MA = 1239MeV) and the pro ton  

(spin = 1 ~h, Mp = 939MeV) are composed of the same three quarks (uud) and 
differ only by the spin orientation of the latter,  which leads to a rat io  of their  
masses of about  1.3. 

The absolute masses of the light mesons can be described by the phenomeno-  
logical formula 

Mq~ : mq + m~ 1 + AMss, (111) 

where the t e rm AMss arises from the strong chromomagnet ic  spin-spin interac- 
t ion potential  

87r ~ q ~  J(x),  (112) Vss(q~t) = --~ as 
mqmq 

with the expectat ion value of gq.  J~ 

~ [ - 3  for s = 0 
aqa~ = ~ (113) 

+1 for S = 1 

For details see for instance [128, 169]. 
From fits to the masses of the low lying meson s tates  one can ext rac t  f rom 

(111) and (112) the light consti tuent quark masses. 
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Similarly the mass difference of the total spin S = ~ and S = ½ baryons can 
be traced back to the spin-spin interaction 

4re a~j (f(£),  (114)  
Vs,(qi6tj) = -~-as mirnj 

where one has to sum over all quark pairs to obtain the mass term AMss. The 
expectation value for the sums over ~i • ~j is in this case 

3 { - 3  for S =  ½ 

j~..1 (TiJ~ = +3 for S - 3 
i<j 

(115) 

Again a fit to the masses of the baryons yield the constituent quark masses 
mu, md and ms. The fitted baryon masses are within 1% of their true value 
[117]. 

These considerations can, however, be only a crude approximation to reality. 
From the previous discussions we know that the nucleon does not just consist 
of the three valence quarks, but we also have to take the sea of quark-antiquark 
pairs and the gluons into account, which dominantly generate the masses of 
the constituent quarks. (The bare quark masses are only 5-10 MeV for the u- 
and d-quarks and about 150 MeV for the s-quark [167].) We also have neglected 
completely the possible orbital momentum contributions of both gluons and 
quarks to the hadron spins. 

2.2 The  Polar ised Cross Sect ion and  A s y m m e t r i e s  

Information about the internal spin structure of the nucleon can be extracted 
from polarised deep inelastic scattering experiments using a polarised nucleon 
target and a longitudinally polarised charged lepton beam (for transverse beam 
polarisation all effects are suppressed by mt/Ebeam). In this case one also has 
to take into account the orientation of the polarisation vector/7 relative to the 
direction of the incoming lepton f¢, denoted by cr, and the angle ¢ between the 
polarisation plane (formed by k and p') and the scattering plane (formed by f¢ and 
k'), the momentum vector of the scattered lepton. The quantities are illustrated 
in Fig. 40. The threefold differential cross section then becomes 

d 3 ~r O~ 2 E '  

d cos 0 de dE' = ~ L , V  v,~,,r 
(116) 

where L ~ ,  W,~ are the leptonic and hadronic tensors which in addition to the 
symmetric parts (12, 13) contain an extra antisymmetric piece: 

L u~ = L(s)u~ + iL (A)u~, 
L(A)UV = 2meeUVa~staqf~ 

(117) 
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polarisation plane 

scattering plane 

Fig. 40. Definition of angles a and ~b. 

Wzv = W (s) + iW (A), 

-I-~2 g2(v , Q2)e~xaqX(p • qsg - Sn" qp~). 

Here s~ is the spin four-vector of the incoming lepton defined as 

2rrt£,s~ ---- 1 ~a(k,  s~)-y"-~,(k, s~) 

(118) 

(119) 

and sn the polarisation vector of a spin-½ target (neglecting the lepton mass). 
The spin-dependent part of the polarised deep inelastic cross section is given 

by the following formula [135] 

d3(o( . )  - ~(~r + ~)) e 4 
dx dy d~b 47r2Q 2 

_ _  { oo o 

-sinc cos b 7v/- 2[Ygl+g2] } • 
(12o) 

7 is defined as 7 = ~ / - ~ / v ,  a is the polar angle of the target polarisation with 
respect to the beam direction, al = 1 - y / 2  - y272/4 and a2 = 1 - y - y272/4. 
The difference a(a)  - a(Tr + a) describes the cross section difference which is 
achieved by reversing the target polarisation. 

Spin Asymmetries 

Experimentally, the spin structure functions gl (x) and g2(x) can be determined 
by a combined asymmetry measurement off a longitudinally (c~ = 0 °, 180 °) and 
a transversely (a -- 90 °, 270 °) polarised target. Because of the mixing of gl and 
g2 a precise determination of gl from a longitudinally polarised target alone is 
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not possible. The experimentally measured cross section asymmetries All and 
A± 

= (121) All at~ + a t t  ; A± - a t ~  + ate- 

obtained by spin flip of a longitudinally and transversely polarised target can be 
related to the asymmetries A1 and A2 of the exchanged virtual photon by the 
relations 

All = D .  (A1 + r]. A2) and (122) 

A± = d .  (A2 - ~- A1) • (123) 

The kinematic factors D, d and ~, ~ are defined by 

D = y(2 - y) (1 + 72y/2) (124) 
y2(1 + 72) (1 - 2m~/Q 2) + 2a2(1 + R) ' 

~ / a 2  (125) 
= ( 1 -  y/2) ( 1 + 7 2 y / 2 )  ' 

(126) d = D 1 - y /2  ' 

_ 7 (1 - y/2) (127) 
1 + 72y/2 

D and d can be regarded as depolarisation factors of the virtual photon. R(x ,  Q2) 
is the ratio of cross sections for longitudinally and transversely polarised virtual 
photons. 

P h o t o n  Absorpt ion Cross Section 

From the measured asymmetries All and A±, the virtual photon asymmetries 
A1 and A2 can be calculated which are independent of the kinematics of the 
lepton and are directly related to the photon-nucleon absorption cross sections 
for a given x and Q2: 

G½ _ - -  
A1 - - a ]  gt 72g2 (128) 

a !  + a~_ F1 ' 
2 2 

A2 - CrTL -- 7(gl + g2) (129) 
0"W F1 

Here a !  and aa  are the virtual photo-absorption cross sections when the pro- 
jection 2of the t~tal angular momentum of the photon-nucleon system along the 
incident photon direction is ½ or ~ respectively, aT = (a] + a~)/2 is the to- 
tal transverse photo-absorption cross section and •TL is a term arising from 
the interference between transverse and longitudinal amplitudes. It follows tha t  
ffTL ~ ~ and therefore there is a positivity limit on the value of A2: 

A 2 =  aT___L < ~ v / R ( x , Q  2) . (130) 
a T  - V 4 - 
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When the term proportional to A2, which has an explicit 1 / V ~  dependence, is 
neglected in (122) and (125) then we obtain the relation between the polarised 
structure function gl and the asymmetry All 

All (131) 
gz ~ 1 + 7 2  D , 

with 
1 -}-7 2 

= 2z(1 + R " 
(132) 

2.3 Po la r i sed  S t r u c t u r e  Func t ions  in the  Q u a r k  P r o t o n  M o d e l  

In the quark parton model the polarised structure function gt has a transparent 
probabilistic interpretation. We denote q ; ( - ) ( x )  as the quark number density 
for quarks of flavour f in the nucleon with light cone momentum fraction x 
and parallel (antiparallel) orientation of the parton spin with respect to the 
nucleon spin. A photon with positive helicity can, due to angular momentum 
conservation, only be absorbed by a quark with a spin orientation antiparallel 
to the photon spin, since the final state, a quark, has spin ½ and hence cannot 
have spin projection a In case that the spin orientation of the parent nucleon 
is antiparallel to the photon spin (cross section Orl/2) one consequently probes 
the distribution q+(x), while in the case that photon and nucleon spin have 
the same orientation (cross section a3/2) one probes the distribution q - ( x )  and 
consequently 

gl (x) (x al /2 - a3/2 • (133) 

So we can (omitting the Q2 dependence) identify 

I 

1 E e• [Sq.f (x) + 501 (x)] , 
2 I 

(134) 

with 5qf (x) = q]  (x) - q - ]  (x). 
In the unpolarised case we sum over both cases and recover (20) 

1 

f 
1 

: - + 0s( )l , 
2 

I 

(135) 

with qf (x)  =- q-~(x) + qy (x )  

and F1 (x) oc al/2 -t- a3/2 • 

(136) 
(137) 
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The second spin dependent structure function g2 (x, Q2) does not have an equally 
transparent and probabilistic interpretation. Its knowledge is required for an 
unambiguous determination of gl (x, Q2) from the cross section (120). In addition 
it contains further important information. From the operator product expansion 
it is given by [183, 175] 

~zz 1 dzgl g2(x, Q2) = -g l  (x, Q2) + (z, Q2) + ~2(x, Q2) (138) 
z 

= gWW(x, Q2) + ~(x,  Q2) , (139) 

where the Wandzura-Wilczek term gWW(x, Q2) corresponds to the twist-2 con- 
tribution and ~2(x, Q2) is a twist-3 contribution which arises only for massive 
quarks and is sensitive to quark-gluon correlations. 

Sum Rules  

Important information about the spin structure of the nucleon can be extracted 
from the integrals of the structure functions as in the unpolarised case, where 
from f3(F~(x) + F~(x)) dx we learned that quarks carry only about 50% of the 

nucleon's momentum and from f3 (FP(x) - F~(x))dx/x we learned that quarks 
indeed carry the assigned fractional charges and that the light quark sea is not 
flavour symmetric, fi < d. 

We define as the first moment of gl 

introduce the notation 

~o 1 = gl(x)dx , (140) 

~0 
1 

Aq I = (Sq/(x) + 5~i(x)) dx (141) 

and get from (134) 
1 

/ 

For the proton we then can write 

(142) 

1(4 1 )  
= ~-~(Au- Ad)+ ~-~(Au+ A d - 2 A s ) +  9(Au+ Ad+ a s ) + . . .  (143) 

1 1 1 
= ~ a 3  + ~ a s  + ~ao • 

Here ao, a3, as are the proton expectation values of the axial vector current 

- A j  
Ay = ¢7~75(~-)¢, j = 0 , . . .  ,8 , (144) 
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where the matrices Rj are the generators of flavour SU(3) in the Gell-Mann 
standard notation. 

From isospin symmetry  one can obtain the corresponding formula for the 
neutron: )1 

Ir = -a3  + ~as + g~o • (145) 

The matr ix  elements a3 and as can be also obtained from the weak decays of the 
hyperons in the spin-~ octet.  Assuming SU(3) flavour symmetry  all axial currents 
in this octet  are given by two decay constants, F and D. These were determined 
experimentally. For details see [33] and references therein. The relations are 

a a = F + D ,  a s = 3 F - D  . (146) 

The matr ix  element aa is, from isospin symmetry,  equal to the decay constant  
ga -~ g A / g V  ~ 1.2573 4- 0.0028 [167], the ratio of axialvector and vector coupling 
constants which can be obtained from the Gamov-Teller ~ decay of the neutron. 

The other numerical values are [33] 

F / D  = 0.575 + 0.016, F = 0.459 i 0.008, D -- 0.798 ~: 0.008 . (147) 

The axial singlet matr ix element a0 can, however, not be fixed from hyperon 
decays. 

From (141) and (144) one obtains the Bjorken sum rule [72, 75], which con- 
tains only the triplet matr ix  element aa 

1 1 
I ~  - I t = -~a3 = -~ga = 0.209 (Bjorken sum rule) . (148) 

Separate sum rules for the proton and the neutron can only be derived when 
assumptions about  ao are made. Ellis and Jaffe [104] assumed that  the strange 
quarks are not polarised, A s  + A~  =_ O, leading to a0 = as and thus 

= "~ga 4"1 + 3 -~- ~- i (Ellis-Jaffe sum rules) , (149) 

I ~  = 0 .185 ,  I I  ~ = 0 . 0 2 4  . 

In the quark parton model the singlet axial charge ao is related to the con- 
tr ibutions of all quarks to the nucleon's spin (in units of ½h) 

a0 = z~u + z~d + Z~s = / ~  . (150)  

Naively, from the discussions in Chap. 2.1, we expect tha t  the nucleon spin is 
just the vectorial sum of the quark spins and thus A Z  _-- 1. The value obtained 
from a3 is A ~  = 0.579 4" 0.026 [93]. 

Such a reduction can be expected from relativistic effects, which also lead to 
a reduction of g~ from its quark model value 5 to ,~ 5, and from the observation 
that  quarks carry only ~ 50% of the nucleon's momentum. 
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2.4 QCD Evolut ion of  Polarised Structure Functions 

We have discussed in Chap. 1.3 that due to the Q2 dependence of the strong 
coupling constant ~,(Q2) and the QCD processes shown in Fig. 10 quark and 
gluon distributions become Q2 dependent. The same is true in the polarised 
case, where one obtains, apart from the splitting functions, identical evolution 
equations for the polarised quark distributions 6q(x) and the polarised gluon 
distribution 6g(x). If we again split the polarised quark distributions into flavour- 
non-singlett (NS) and singlett (S) parts [55] 

) 6qNS(x,Q 2) = ~_, ~,(e2) - 1 (6qf(x,Q 2) + 5~-lf(x, Q2)) , (151) 
f = l  

nI  
+E(~, Q~) = y~ (6q$(~,Q ~) + 6C+f(~, Q~)) , (152) 

f = I  

with <e2> = ~ e2y/nf, we obtain the analogues to equations (65), (66) [28] 

d 6qNS _ 6~, z~RN s 6qNS 
d In Q2 - ~ qq e 

d (6~) Olsf/~P2q2nfApSqg ) (6~) 
d In Q2 6g = ~ ~, ApgSq ApSg ® 6g 

(153) 

The structure function gl is given by a convolution of the singlet and non- 
singlet coefficient functions, Cs, CNS, Cg with the polarised parton distribution 
functions 

1 6qNS 2niCg (154) gl(x) = ~ <e2> {CNs ® + Cs ® 6E + ® 6g} 

The splitting and coefficient functions depend on x and as(Q 2) and can be 
expanded in power series in (~s 

c(~,~.) = c(°)(~) + ~ ' c  (~) + o(~.") 
2~r (155) 

P(27, O/s) ---- c(O)(x) + ~:~SC(1) nt_ O(ot  2) . 
2~r 

At leading order Cs (°) ( : )  - - 6  ( 1 -  i )  and C (°) ( i )  -- 0, such that gl de- 

couples from 6g. The next to leading order coefficient functions C (D were first 
calculated by Kodaira [139, 140]. Full next to leading order calculations became 
only recently available [187, 162, 182]. As in the unpolarised case the separation 
between the quark and gluon distributions become factorisation scheme depen- 
dent in next-to-leading order. 

Similarities and differences of the spin-dependent and spin-averaged splitting 
functions are discussed e.g. in [147, 119]. Two independent facts need to be 
stated: Due to helicity conservation at the quark gluon vertex the process g -+ q~t 
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leads to a q, Cl pair with opposite helicity, i.e. zero polarisation. Consequently 
one cannot  expect a rise of gl (x) at  low x due to this process in contras t  to 
the unpolarised case, where this process contributes substant ia l ly  to the  rise of 
F:  (x, Q2) and F1 (x, Q2) at low x. On the other hand helicity conservation at  the 
quark gluon vertex for the process q -+ qg requires tha t  the spin of the gluon 
must  be compensated by orbital  angular  m o m e n t u m  L. 

QCD Correct ions to Sum Rules  

Taking QCD effects into account the Bjorken and Ellis-Jaffe integrals become 
also Q2 dependent,  we obtain 

I p - I~ = lgaCNS(Q2) (156) 
U 

IP'" = l (±aa + la s )  CNS(Q2) + laoCS(Q2) . (157) 

The nonsinglet and singlet coefficient functions can be expanded into power 
series in as (Q2)/~ 

C ( a s ) = 1 - C 1 ( ~ ) - C 2 ( ~ ) 2 - C 3 ( ~ ) 3 . . .  (158) 

The  coefficients C1 were calculated in the MS scheme by Kodai ra  [139, 140, 141]. 
Recently the coefficients were calculated up to third order for the non-singlet case 
[148] and up to the second order for the singlet case [149], and es t imates  exist 
for the constants C4 Ns and C s [138]. They  depend on the number  of flavours n I .  
For n I = 3 they are: 

C~ s = l ,  C~ s : 3 . 5 8 3 3 ,  C~ s : 2 0 . 2 1 5 3 ,  C~ s = 1 3 0  

S C 1 = 1, C s = 1.0959, C s = 3.7 . 
(159) 

Note tha t  the coefficients increase substantial ly with increasing order. Neverthe-  
less at  not too small Q2 the convergence of (158) is still reasonably fast. For 
n f  = 3 one gets from (158), (159) 

as (Q 2 = 2.5 GeV 2) = 0.272 , 

a s (Q 2 = 10GeV 2) = 0.205 , 

CNS(Q 2 = 2.5 GeV 2) = (1 - 0.087 - 0.027 - 0.013 - 0.007) = 0.866 , 

CNS(Q2 = 10 GeV 2) = (1 - 0.065 - 0.015 - 0.0006 - 0 .0002)=0.9192.  

(160) 



306 K. Rith 

Higher Twist Effects 

The spin-dependent structure functions and their moments are, as the unpo- 
larised structure functions, subject to higher twist contributions (see Chap. 1.4) 
proportional to 1/Q2'L These describe long-distance, nonperturbative effects like 
correlations between quarks and between quarks and gluons and involve details of 
the wavefunction of the quarks in the nucleon. Such effects could be quite large at 
the low Q2 values of the present data. Several authors have estimated the higher 
twist effects to the Ellis Jaffe and Bjorken sum rules [54, 136, 163, 155, 106]. 
The calculations of such terms in different models yield very different results, 
but there is some consensus in the literature that the effects are small. For a 
recent review see [79]. 

The  U(1) Anomaly 

In the simple QPM approach the singlet axial charge a0 and the contributions 
to it from the different flavors, au, ad and as, are identified with the fraction 
of the nucleon's spin carried by the quarks: AE, Au, Ad and As. In QCD the 
situation is more complicated, as in contrast to the conserved vector current the 
axial currents are not conserved even for massless quarks due to an anomalous 
gluon contribution [29, 102, 86] owing to the Adler-Bell-Jackiw anomaly [15, 66] 
caused by the triangle graph 

%,75 

This affects only the singlet axial current while it cancels between flavors in 
the conserved nonsinglet current. One finds a non-vanishing divergence 

O . ~ " ~  = ~snso  k" = ~ n l ~ ( G . ~ d  "~) (161) 
2r u z r  

where k ~ is the axial gluon current, O.~ is the gluon field tensor and n I is 
the number of active flavors. For a review in context of polarised scattering 
see [33, 87, 88]. The singlet axial charge ao(Q 2) contains then an extra piece 
proportional to as/2rAg, where Ag is the first moment of the polarised gluon 
distribution. The axial gluon current k" is not gauge invariant and therefore the 
separation of a0 into A ~  and Ag becomes factorisation scheme dependent. In 
the Adler-Bardeen [16] factorisation scheme 

n as(Q2) Ag'Q 2~ ao(Q 2)= A Z -  I ~  ( ) (162) 
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and A E  is independent of Q2. In other schemes ao(Q 2) is equal to A E  but then 
it depends on Q2. 

2.5 E a r l y  D a t a ,  t h e  E M C - S L A C  ' S p i n  P u z z l e '  

The first deep inelastic polarised scattering experiments from a polarised pro- 
ton target  were performed end of the 70's at SLAC (target material  butanol  
C4HgOH) [21, 64] and mid of the 80's by the EMC muon experiment at CERN 
(target material  ammonia NH3) [45, 46]. The EMC polarised target  was subdi- 
vided into two halfes, which were longitudinally polarised in opposite direction 
to allow for simultanous data  taking with two relative orientations of beam and 
target  polarisation required to measure the asymmetry  All. The target  polarisa- 
tion was reversed about  every two weeks. 

In Fig. 41 the results for gP(x) from these experiments is shown as a function 
of x at a fixed Q2 = 10.7GeV z, the mean Q2 of the data. It falls off quickly for 
x ~ 0.3 and seems to  approach a constant value for small values of x. Several 
observations should be noted: 

- at large x the agreement between the SLAC and the EMC data  is very good, 
- the EMC data, taken at about  ten times higher beam energy extend the x 

range from x = 0.1 down to x = 0.015, thus giving bet ter  constraints for the 
extrapolat ion towards x = 0, which is necessary for the determinat ion of I p, 

- the error bars of the low x data  are quite large, although EMC required 
about  110 days of data  taking to achieve this accuracy. 

The reason for the large error bars is mainly of kinematical nature,  since due to 

~A1 • F2 
~gl c< ~A1 • F1 c< - -  (163) 

X 

it blows up like 1Ix. 
The error for the asymmetry Az is given by 

1 N?~(f.pB. pW. D)-z (164) 
~A1 - ~/Nt~ + 

where N t$, N ti" are the count rates per bin for the two target  spin orientations, 
pB is the beam polarisation, pT the target  polarisation, D the depolarisation 
factor (124) and f a dilution factor describing the fraction of deep inelastic 
events orginating from polarised protons in the target.  For butanol  this factor 
is about  10/74, for ammonia about  3/17. For typical values of these quantit ies 
( f  = 0.15, pB = pW = 0.8, D = 0.5) 6A1 is more than 20 times bigger than  
the expectat ion from the count rates alone. It is evident tha t  the best way to 
decrease the statistical error of gl substantially is to use targets with pure atomic 
species like polaxised atomic hydrogen gas ( f  = 1 instead of 0.15). 

The data  in Fig. 41 tend to be constant for x < 0.2 as predicted from Regge 
theory [131, 105]. The contributions to the integral from the unmeasured regions 
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Fig. 41. E a r l y  S L A C  and E M C  d a t a  for t h e  polar ised  p r o t o n  s t r u c t u r e  f u n c t i o n  gP(x)  

versus x. 

were est imated to be small: 

~01 f0.01 
g P ( x )  d x  = 0.001 and g P ( x ) d x  = 0.002 . (165) 

.7 JO 

From the EMC data  alone a value for the Ellis-Jaffe integral 

/: I p = gP(x )  dx = 0.123 ± 0.013(stat) ± 0.019(syst) (166) 

was obtained and for the combined EMC-SLAC data  a slightly larger value, but  
with smaller error bars: 

I p = g P ( x ,  Q2) dx -- 0.126 ± 0.010(stat) ± 0.015(syst) . (167) 

This value was much smaller than the value from the Ellis-Jaffe sum (149) which, 
using only first order QCD corrections in (157) with as(Q 2 = 10.7 GeV 2) = 0.27 
and F / D  = 0.631 ± 0.018, was expected to be 0.189 ± 0.005. 

Assuming the validity of the Bjorken sum rule and using slightly different 
F and D values than quoted above one obtained with this result for I p three 
equations 

aa = A u  - A d  = 1.254 ± 0.006 

as  : A u  + A d  -- 2 A s  = 0.397 ± 0.020 (168) 

ao : A u  + A d  + A s  = 0.098 ± 0.076 ± 0.113 

and could solve these equations for the mean z component of the spin carried 
by each of the three quark flavours in a proton with spin projection (in units of 



h) 1 

and 
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(Sz)u = ½Au = 0.391 q- 0.016 ± 0.023 

(Sz)d = ~ A d = - 0 . 2 3 9 4 - . . .  

= ~ A s  = - -0 .095± . . .  

(169) 

(SZ)quarks __ 1 / ~  : "~-0.060 ± 0 . 0 4 7  ± 0.069 . (170) 

From this very surprising result one had to conclude that the fraction of 
the nucleon spin originating from quark spins is very small, in contrast to the 
expectations of the Quark-Parton-Model discussed in Chap. 2.1 and Chap. 2.3. 
Furthermore the strange quarks, which were assumed in the derivation of the 
Ellis-Jaffe sum rule to be unpolarised not only seem to be polarised, but even 
more they seem to be polarised opposite to the polarisation of the parent nucleon. 

The above result caused a lot of excitement and sometimes has been called 
'proton spin crisis' or 'proton spin puzzle'. It has led to an extensive discus- 
sion about the internal spin structure of the nucleon and how quark and gluon 
spins and orbital angular momenta contribute to the nucleon spin, which most 
generally is given by helicity sum rule 

1 (171) (SZ)Proton ---- A ~ '  -F L quarks q- A g  -F Lgz lu°ns = ~ , 

where L quarks and L glu°ns denote the components of the orbital angular momen- --Z --Z 

turn of quarks and gluons along the quantisation axis. 
It should be noted that recently leading order evolution equations for the 

quark and gluon orbital angular momenta have been derived [137] which couple 
them with each other and with the quark and gluon spins. For Q2 _+ co they 
obtain the following solution for the asymptotic spin fraction carried by quarks 
and gluons 

~ ]- quarks __ 3 n l  A ~  + - - z  -- 2Jq = 0.43 , 
16 + 3nf (172) 

2Ag + 2Lz glu°ns - 16 - 2Jg = 0.57 . 
16 + 3nf 

These are exactly the same values as those predicted for the asymptotic momen- 
tum fractions. 

2.6 N e w  Exper iments  

The unexpected EMC result triggered an enormous theoretical activity resulting 
in a plethora of publications which gave a lot of new insight into the problem. 
At the same time a new generation of experiments (SMC at CERN; E142, E143, 
E154 at SLAC and HERMES at HERA-DESY) has been performed/started 
using both polarised proton and neutron targets to clarify the 'spin-puzzle' ex- 
perimentally, to disentangle the fractional contributions of quarks, gluons and 
orbital angular momenta to the helicity sum rule (171), and to answer a couple 
of questions like for example: 
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- what  is the x-dependence and the first moment  of the polarised neutron 
s t ructure  function g[ (x)?  

- is the Bjorken sum rule violated? 
- how large is the  singlet axial change ao, i .e. the  contr ibut ion of quark  spins 

to the nucleon spin? 
- is the polarisat ion of seaquarks AS large and negative? 
- does AS just  cancel the contribution from valence quarks AV? 
- is the gluon polarisat ion Ag(x) large but  compensa ted  by large orbi ta l  an- 

gular m o m e n t u m  contributions Lz? 
- is the nucleon spin mainly due to orbi tal  angular  momenta?  

I t  can not be emphasised enough tha t  these new experiments  were only possi- 
ble due to ext raordinary  technological developments to achieve bo th  high beam 
and target  polarisation. Each of these experiments  is based on different tech- 
nologies and represents a major  effort with respect to technological ingeniuity, 
manpower ,  investment and large scale organisation. 

T h e  S M C  E x p e r i m e n t  

The measurements  of the SMC collaborat ion were performed in the years 1992- 
1996 with the upgraded muon spectrometer  [13, 6, 7, 9, 10, 12, 11] previously 
used by the EMC and NMC experiments  (Fig. 42). The  beam energies and tar-  
gets used in these experiments  are summarised  in Table 3. The  high energy 

Tab le  3. Data taking conditions of the SMC, SLAC and 

Experim. Year E B !pB 
GeV % 

SMC 1992 100 78 
1993 190 78 

100 78 
1994 100 78 
1995 100 78 

190 78 
1996 190 78 

E142 1992 25.51 39 
E143 1993 29.1 84 

29.1 84 
E154 1995 48.3 82 
HERMES 1995 27.5 50 

1996 27.5 

I B N Target pW 

HERMES experiments 

0.5 pA d 
0.5 pA p 
0.5 pA p 
0.5 pA d 
0.5 pA d 
0.5 pA d 
0.5 pA 
4~A 

0.6 nA 
0.6 nA d 
1 #A n 

10-30 mA n 
10-30 mA p 

n 

P: 

Material % 
butanol 22-38 [[ 

86 II 
80 A_ 

b u t a n o l  49 II 
butanol 50 [[ 
butanol 44 ± 

NH3 89 [[ 

f T 
(N/cm 2) 

D.28 418 x 10 '~ 
0.13 4.2 x 1025 

4.2 x 1025 
0.28 4.8 x I0 2s 
0.28 4.8 x 1025 
0.28 4.8 x 1025 
0.15 4.2 × 1025 

aHe 35 H,A-10.11 3.6 x 1022 
15NHa 72 H,A- 0.15 1 × 10:4 
lSNDa 25 [[,-l- 0.23[ 1.2 x 1024 

aHe 38 [[,_l_ 0.16 3.6 x 1022 
aHe 50 [[ 0.33 1 X 1015 
H 90 ]] 1 7 x 10 la 

muon beam at CERN is produced by bombardemen t  of a beryl l ium ta rge t  with 
540 GeV protons from the SPS and subsequent decay of m o m e n t u m  selected 
secondary pions and kaons into muons and neutrinos. Typical  beam intensities 
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F i g .  42. The SMC beam line and Forward Spectrometer. 
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were 4.5 × 10 r muons per SPS pulse (2.4 s long with a repeti t ion period of 14.4 s) 
corresponding to an averaged beam current of only 0.5 × 10 -12 A. The muon 
beam is 'natural ly '  longitudinally polarised because of pari ty violation in the 
weak decays of the parent mesons*. The polarisation in the labora tory  system 
depends on the ratio of muon and hadron energies. SMC operates with a typical 
ratio of E u / E r  "~ 0.9, which gives a beam polarisation of about  p~ __ - 8 0 %  for 
a p+ beam. 

The beam polarisation is never reversed (this would only be possible at 
small muon beam energies where both  small and large values of E~,/E,~ could 
be selected). The polarisation was determined by two different methods  in a 
dedicated magnetic spectrometer  downstream the main muon spectrometer:  
The measurement of the Michel spectrum of positrons from muon decay in 
flight, p+ -+ e+P~Ve, and the measurement  of the spin dependent  cross sec- 
tion for elastic scattering of polarised muons on polarised electrons. In the lat ter  
case a 2 .7mm thick foil made out of a ferromagnetic alloy (49%Fe, 49%Co, 
2%V) was used as polarised electron target  with effective electron polarisation 
IPel -- 0.0756:t:0.0008. Both measurements gave consistent results with a relative 
statistical error of -,~ 3.5% and relative systematic error of ,~ 2.5%. 

The very low muon beam intensity demands a very thick polarised target.  
The SMC solid state target  (Fig. 43) (which is similar to the EMC polarised 
target) is the largest polarised target  ever built. It uses the method of dynamical  

::Sf°;i 
3He/4He Distiller n~ 

Sintered ~ 
Heat Exchanger ~ ~ 

Mixing chamber 

~ 4He phase lm 

separator 

~ - L  Target cells I I 

IIH 

Dip°le magnet Trim e°ils / /  

Dilution refrigerator Superconducting magnets 

Fig. 43. The SMC polarised target. 

nucleon polarisation and contains two 60 cm long oppositely polarised target  

* In the rest system of the meson the muon is fully polarised, a positive muon having 
negative helicity. 
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cells, separated by a 30cm gap, exposed to the same muon beam and thus 
allowing simultaneous data  taking with the two relative orientations of beam and 
target  polarisation required to measure the asymmetry  All. A superconducting 
magnet  system provides a strong magnetic holding field of 2.5 T with a relative 
homogeneity of +3.5 x 10 -5 over the target  volume. A perpendicular  holding 
field was also used for reversal of the spin direction and for the measurement  of 
A±. The target  material  was cooled down by a 3He-4He dilution refrigerator to 
a tempera ture  below 0.5 K and the target  workedin the 'frozen spin' mode. The 
two spin directions were produced by irradiating the material  with microwaves of 
slightly different frequencies just below or above the corresponding electron spin 
resonance frequency. Typical polarisations are 50% for the deuteron and 85% 
for the proton target. The polarisation was measured with nuclear magnetic  
resonance technique (NMR) with a typical relative accuracy of 3-5%. The  spin 
direction was reversed every few hours by rotat ing the direction of the magnetic 
field. 

In addition to the polarised material  the target  cells contained other  mate-  
rials, mostly the 3He-4He cooling liquid and the NMR coils for the polarisat ion 
measurement.  The corresponding dilution factor f is shown for the proton target  
in Fig. 44 as a function of x. A typical value over the range 10 - 2  < X < 10 - 1  

0.16 

0 
0 0.12 

0 . ~  0.08 

~ 0.04 

. . . I  , , , , , , i i i  i i i i , , , , I  

10-3 10 .2 10 -I 

X 

Fig. 44. The dilution factor for the S M C  proton target versus x without ( f  ) and with 
( f ' )  radiative corrections. 

is f ~_ 0.12, in the case of deuterated butanol  it is about  a factor of 2 larger. 
For proper  calculation of the statistical errors the SMC collaboration recently 
also included the effect of radiative corrections (mainly from the unpolarised 
target  material) in the dilution factor [12]. As can be seen from the dashed line 
in Fig. 44 the effective dilution factor f '  is substantially smaller than  f and 
becomes as low as f f  ~ 0.04 at x ~ 10 -3. 
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The SLAC Experiments  E142, E143 and E154 

The main parameters of the three SLAC experiments are summarised in Ta- 
ble 3. The first of these experiments, E142 [34, 35], was still performed with a 
'standard' polarised electron source based on photoemission from an A1GaAs 
photo cathode illuminated by circularly polarised light from a dye laser [25]. 
This source delivered typically 2 x 1011 electrons per pulse at 120 Hz with an 
electron polarisation of about 36%. The electron helicity was changed randomly 
pulse by pulse by controlling the circular polarisation of the laser light. The 
beam polarisation was measured with a relative systematic accuracy of 3.1% by 
M~ller scattering from thin magnetised Vacoflux foils. Atomic binding effects for 
the target electrons [150] were taken into account which modify the analysing 
power compared to free target electrons by up to 15% depending on the geome- 
try of the polarimeter. A single arm polarimeter was used for E142, while E143 
and E154 used in addition a double arm polarimeter with a relative precission 
of 2.5%. 

E143 [1, 2, 3] and E154 [4] profited a lot from the development of elec- 
tron sources with a strained-lattice GaAs cathode illuminated by a flash-lamp- 
pumped Ti-sapphire laser operated at 850 nm [157]. This technology was success- 
fully pushed at SLAC with an enormeous effort both in manpower and capital 
investment for the measurements of electroweak parameters on the Z ° peak at 
SLC. This new type of source delivered a beam polarisation of up to 86% with 
(2-4) x 109 electrons per pulse at a rate of 120 Hz. 

E142 and E154 used a polarised 3He target, which is to a good approxi- 
mation a polarised neutron target, for the measurement of the polarised neu- 
tron structure functions. The target, shown in Fig. 45, is based on a double 
chamber design. In the upper 'pumping chamber' the 3He atoms were polarised 
through spin-exchange collisions with polarised rubidium atoms which were op- 
tically pumped by circularly polarised laser-light [89]. E142 used a system of 
five Ti-sapphire lasers pumped by argon-ion lasers producing 20 W cw optical 
power. E154 even increased the total laser power to 60 W by the additional use 
of three diode laser array systems. The electron beam passed through the lower 
'target chamber', a 30 cm long glass cell with thin exit windows (E142:110 #m, 
E154:50 pm) operated at 8.6 bar and 0 ° C temperature resulting in a 3He tar- 
get density of 2.3 × 1020 atoms/cm 3. A small amount of N2 was added to cause 
radiationless quenching of the Rb excited state atoms to increase the efficiency 
of optical pumping. The Rb atoms were contained almost entirely in the upper 
(heated) pumping cell. The extra material of the exit windows and the N2 further 
reduced the number of polarisable nucleons in the target. The dilution factor of 
3He (f  she _~ 1/3) was further decreased by a slightly x-dependent factor (E142: 
f ~- 0.35. f3He; E154: f ~-- 0.58. f3ne). 

The 3He polarisation was measured with NMR technique, calibrated with 
signal from a water sample of the same geometrical size as the target cell. Typical 
values were PT ~ 0.33 (E142) and PT " 0.38 (E154) with a relative systematic 
accuracy of =t=7.1%, where the error is dominated by the calibration constant 
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Fig. 45. The E142 polarised 3He target. 

derived from the water signal. 
It should be stressed that the fabrication of useable glass cells is really an 

art. Very special treatments [35] during fabrication and filling with 3He, Rb and 
N2 was required to achieve good spin-relaxation properties of the glass walls and 
to avoid breaking of the cell. Relaxation times in the range of 50 to 65 hours 
were reached for the cells used in the experiments. 

The E143 polarised target (Fig. 46) [97], which uses I~NH3 and 15NDz as 
target material, is a cold solid target which is based on the same design principle 
as the one described above for SMC, although of much smaller size. It consists of 
only one cell of 3 cm length in the beam, the NH3 and the ND3 targets stacked on 
top of each other. The material was polarised by microwave irradiation at about 
138 GHz using the mechanism of dynamicM nuclear polarisation. The holding 
field of 4.8 T was provided by superconducting Helmholtz coils, the temperature 
was kept at 1 K by a 4He evaporation refrigerator. Proton polarisations of 65- 
80% were achieved in 10-20min which then slowly decreased to about 50-55% 
by radiation damage. The average deuteron polarisation was about 25% with a 
maximum greater than 40%. The dilution factor varied between 0.13 and 0.17 for 
the NH3 target and between 0.22 and 0.25 for the NDa target. The electron beam 
was rastered over the 4.9 cm 2 front surface of the target to uniformly distribute 
heating and radiation damage. The radiation damage was repaired by a special 
annealing procedure, after typically 10 anneal cycles the target material was 
replaced. 

The beam energies used by E142 were 19.4, 22.7 and 25.5 GeV. For E154 the 
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Fig. 4{}. The E143 polarised target. 

beam energy was increased to 48.3 GeV. This allowed to extend the kinematic 
range to lower values of x and higher values of Q2. 

Scattered electrons were collected in two single-arm spectrometers (Fig. 47) 
at horizontal scattering angles (9 of 4.5 ° and 7 ° (E154:2.75 ° and 5.5 °) covering 
a momentum range from 7 to 20 GeV/c for both arms (E154:10-35 GeV/c and 
10-43 GeV/c), and solid angles of 0.097msr and 0.435 msr. Each spectrometer 
was instrumented with a pair of threshold Cerenkov detectors, a segmented lead- 
glass calorimeter, six planes of segmented scintillation counters grouped into two 
hodoscopes and two pairs of lucite trigger counters. The main electron trigger 
consisted of a triple coincidence between the two Cerenkovs and the sum of 
the shower counter signals. Energy E'  and scattering angle ~ were extracted 
from the summed pulse heights and the centroid position of the shower in the 
calorimeter. A large sample of deep inelastic scattering events was collected in the 
different experiments and used to determine the asymmetries and spin structure 
functions. 
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Fig. 47. The E142/E143 spectrometers. 

The HERMES Experiment 

The HERMES experiment at the positron/electron storage ring of the HERA 
accelerator system is designed to investigate not only inclusive but also semi- 
inclusive processes in polarised deep inelastic scattering using a large acceptance 
forward spectrometer. It is based on two novel technical achievements: longitudi- 
nal electron polarisation in a high energy storage ring, based on the asymmetry 
in the spin-flip probability for the emission of synchrotron radiation (Sokolov- 
Ternov effect [178], which leads to self-polarising of the beam, and the use of 
polarised internal gas targets of hydrogen, deuterium and 3He consisting of a 
windowless thin-walled storage cell fed by high intensity sources of polarised 
atoms. This target technology has the advantage that the target atoms are pure 
atomic species and hence no dilution of the asymmetry occurs in the scattering 
from unpolarised target material resulting in the very favourable dilution fac- 
tors of 1, 1 and 1/3 for the H, D and 3He target. Furthermore the target spin 
can be reversed rapidly which is essential for minimising systematic errors. The 
HERA positron beam at present has an energy of 27.5 GeV and a peak current 
of 35-40 mA. As mentioned above the positron beam in the HERA storage ring 
becomes transversely polarised to a high level by the Sokolov-Ternov mecha- 
nism. For an ideal machine the maximum asymptotic degree of polarisation is 
92.4%, the time constant T for polarisation build up is proportional to p3/ES, 
where p is the bending radius in the magnetic field and E is the beam energy. 
In a realistic storage ring the polarisation build up is disturbed by depolarising 
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effects influencing both the polarisation build up time and the achievable degree 
of polarisation. For a good beam tune the time constant at 27.5 GeV is approx- 
imately 20-25 minutes. Precise alignment of the machine quadrupoles and fine 
tuning of the orbit parameters is needed to achieve high polarisation [58, 60]. 
The required longitudinal beam polarisation direction is obtained using spin ro- 
tators [83] located upstream and downstream of the HERMES experiment in 
the east straight section of HERA. This results in the first longitudinally po- 
larised electron beam in a high-energy storage ring [61]. The first observation of 
longitudinal polarisation at HERA is shown in Fig. 48. The transverse beam po- 
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Fig. 48. First observation of  longitudinal electron polarisation at HERA.  

larisation is measured continuously using Compton back scattering of circularly 
polarised laser light. Values of the equilibrium polarisation in the range 40% to 
65% are obtained under normal running conditions. For the '95 data taken with 
the 3He target experimental data were analyzed only when the polarisation was 
above 40%. The average polarisation for the analyzed data was 55% with a frac- 
tional systematic error of 5.5% dominated by the uncertainty in the calibration 
of the beam polarimeter. In principle the direction of the beam polarisation can 
be reversed for every fill by moving the magnets of the spin rotators. This was, 
however, tried for the first time beginning of 1997. A single polarisation direction 
was used for the measurements in 1995/96. 

In 1995 the polarised 3He target was used. The aHe atoms are polarised in a 
glass pumping cell by spin exchange collisions with a small sample (~ 10 -6) of 
the 3He atoms which are in the 2381 metastable state. The 38 atoms are created 
by a weak RF discharge and polarised by optical pumping with 1083 nm laser 
light [95, 121]. Compared to the technique used by E142 no Rb and N2 admixture 
is needed and the polarisation build up time is much faster. The polarised atoms 
diffuse from the glass pumping cell into a 400 mm long open ended thin-walled 
storage cell inside the positron ring, which is constructed of 128 #m thick ultra- 
pure aluminium and is cryogenically cooled to typically 25 K for the 3He and to 
about 100 K for H, D. The atoms perform several hundred wall bounces before 
they leave the storage cell. This way the target thickness is increased by about 
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two orders of magnitude compared to a free gas jet. This provides a target of 
pure atomic species with an areal density of approximately 3.3 x 1014 atoms/era 2. 
The polarisation direction was defined by a 3.5 mT magnetic field parallel to the 
beam direction provided by a pair of Helmholtz-coils. The polarisation in the 
pumping cell is determined from the polarisation of emitted photons produced 
via atomic excitation by the RF discharge, the polarisation in the target cell was 
monitored by measuring the polarisation of photons emitted from atoms that 
were excited by the electron beam. The average value of the target polarisation 
was 46% with a fractional systematic uncertainty of 5%. 

The HERMES atomic beam source (ABS) [179] for polarised hydrogen (H) 
and deuterium (D) is based on the Stern-Gerlach spin separation by multipole 
magnets (see Fig. 49). An intense atomic beam of thermal velocity is produced 

- .~ S t o r a g e  ¢~o,~ ~% 

~% C e l l  ,~,~ ~ A ' - ~ % ~  

A B S  ~ ~ B R P  

=. 

Fig. 49. The HERMES polarised atomic beam source and Breit-Rabi polarimeter. 

by means of a RF-dissociator with a cooled nozzle and skimmer and a powerfull 
differential pumping system. The hyperfine-states with magnetic electron spin 
quantum number mj = -t-1 are focused onto the entrance tube of the storage 

1 cell by a system of sextupole magnets, while those with mj -- - ~  are defo- 
cused. High frequency transitions are used to populate the substates with the 
required magnetic nucleon spin quantum numbers and to provide high vector 
polarisation (Pz) or (for D) tensor polarisation (Pzz). They also provide rapid 
spin reversal. Typical polarisation values for H are above 90%, typical fluxes of 
polarised atoms are 6-8 x 1016 atoms/s which result in a target areal density of 
about 7 x 1013 nucleons/cm 2 for the chosen storage cell geometry. 

A small fraction (~ 10%) of the polarised target atoms is extracted from 
the storage cell sideways as a sample beam and their polarisation is measured 
by a Breit-Rabi polarimeter [118]. This is an atomic beam resonance appara- 
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tus consisting again of sextupole magnets and high frequency transition units, a 
chopper system for background suppression and a quadrupole mass spectrome- 
ter. It allows to measure the relative population of the individual substates with 
2% accuracy and to deduce electron and nuclear polarisation with an error of 
about 3%. 

The high intensity electron/positron bunches of HERA produce a strong 
transient magnetic field transverse to the beam direction which can cause de- 
polarisation of the H and D atoms in the storage cell. A substantial holding 
field of around 0.35T for H and 0.15T for D is needed to decouple the nuclear 
and electron spins and to avoid nuclear depolarisation. A simplified sketch of 
the HERMES target area is shown in Fig. 50. A differential pumping system 

source for I 
l " " as ! solenoid 

p o ~ g  [ 0.35 Tesla 
I (movable) collimators 10 atom.~u~ I / 

against synchrotron radiatior 

storage cell 
29 x 9.8 x 400 mm 3 
d <0.1 mrnAI 
n = I-3.5 x 1014 atoms/cm: 

electron beam 

~ " ~  thin exit windov 
d =0.3  m m S $  

pump 

Fig. 50. Simplified sketch of the HERMES target region. 

upstream and downstream of the target chamber assures that the vacuum ii 
the ring is not affected by the injected gas. Meshes between the storage cell an¢ 
the beam pipe avoid rapid changes of the geometry and prevent the electro1 
bunches from inducing wake fields and resonant RF losses in the target chambe: 
which could heat up and destroy the storage cell and other components. Tw~ 
sets of collimators protect the storage cell against synchrotron radiation gener 
ated in the beam bending and focusing components and tails of the beam. Wit] 
proper beam tuning the detector system was essentially free of electromagneti 
background from such sources. Without these collimators about 100 W of syn 
chrotron radiation would heat the storage cell. The first collimator is movable 
it can be closed to an elliptical aperture of ~2.6(vert) × 6.5(hor) mm 2 which i 
by far the smallest aperture in the ring. 
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A schematic diagram of the HERMES spectrometer [129] is shown in Fig. 51. 
The spectrometer consists of a large dipole magnet surrounding the electron/ 
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Fig. 51. The HERMES spectrometer. 

positron and proton beam pipes of HERA. The beams are shielded from the 
magnetic field by a horizontal iron plate. The spectrometer is constructed as 
two identical halves, mounted above and below the beam pipes. The scattering 
angle acceptance is 40 mrad < O < 220 mrad. Tracking is done by tracking 
chambers (microstrip-gas-counters, drift chambers and multi-wire proportional 
chambers) before, inside and after the magnet. Particle identification is done 
using the combination of four detectors: a radiation-hard lead-glass calorimeter, 
a pre-shower section consisting of one radiation length of lead followed by a 
hodoscope, a transition radiation detector and a N2 gas threshold Cerenkov 
counter. They serve to suppress the large background of hadrons, mostly pions 
from photoproduction, which in the worst part of the kinematic plane is about 
400 times larger than the positron yield. The trigger is formed from a coincidence 
between the Pb-glass calorimeter and a pair of scintillator hodoscope planes and 
require an energy of greater then typically 3.5 GeV deposited in the calorimeter. 
This system provided positron identification with an average efficiency of 98% 
and hadron contamination < 1%. The Cerenkov counter serves to separate pions 
from other hadrons. In 1995 a conservative pion threshold of about 5.5 GeV was 
used to help in positron identification at low energies, in 1996/97 it was decreased 
to below 4 GeV. It is foreseen to convert the threshold Cerenkov counter to a dual 
radiator RICH counter in the winter shutdown 1997/98. It will have clear silica 
aerogel (n = 1.03, %h ~-- 4.2) and C4F10 (n = 1.0005, ~/th ' ~  32) as radiators 
and will allow full r ,  K, p separation essentially for all momenta > 1 GeV/c. 
The luminosity of the experiment is measured by detecting Bhabha (M¢ller) 
scattered target electrons in coincidence with the scattered positrons (electrons) 
in a pair of very radiation-hard NaBi(WO4)2 electromagnetic calorimeters. 
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2.7 The Experimental  Data  

T h e  A s y m m e t r y  A1 

So far the different experiments have mainly collected data for longitudinally 
polarised targets, relatively little time has been spent for measurements with 
transverse target polarisation which we will not discuss furter in this review. 

The longitudinal asymmetry All is determined from the count rate asymmetry 

Nt$ - N~t 
A~xp = N¢$ + N t t  (173) 

by correcting for the polarisation of beam p B  and target p T  and if,  the fraction 
of events originating from polarisable nucleons in the target (including the effect 
of radiative corrections) 

Ai I = A~X,. ( f , .  pB. pT)--I (174) 

All depends on both virtual photon asymmetries A1 and A2 (see (122)). Since 
the contribution of A2 is kinematically suppressed, generally A2 is assumed to 
vanish and the spin asymmetry AI is determined from (131). As is only taken 
into account in the determination of the systematic error by using the upper limit 
from the experiments, shown in Fig. 52 for the proton. Radiative corrections to 
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Fig. 52. A p versus z from S M C  and E143. 

the asymmetry [143, 20] are much smaller than for the unpolarised measurements 
and are applied additively. In the case of solid state targets nuclear corrections 
to the structure functions of unpolarised nuclei of the target material and the 
corresponding radiative corrections have also to be applied. 
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The results for the virtual photon asymmetry A p for Q2 > 1 GeV 2 obtained 
by the EMC [45, 46], SMC [12], SLAC ES9 [21], El30 [64] and E143 [1] exper- 
iments, as published in spring '97, are shown in Fig. 53 as a function of x. The 
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Fig. 53. W o r l d  data for  A p as a f unc t i on  o f  x .  

data  cover a range 0.001 < x < 0.8 and 0.2 GeV 2 < Q2 < 72 GeV 2. For each 
point in x the mean Q2 value is different and typically the (Q2) for the da ta  from 
the muon experiments is about an order of magnitude higher than for the cor- 
responding ones from the electron experiments. Within the statistical accuracy 
of the data  the agreement between the different experiments is excellent. For 
x > 0.03 the x dependence of At is determined by the high statistics da ta  from 
E143. The low-x region x < 0.03 can presently only be accessed by the muon 
experiments due to their higher beam energy. The SMC data  for x < 0.004 are 
in the Q2 range 0.2 GeV 2 < Q2 < 1 GeV 2 and are not used to evaluate gP or its 
first moment since it is questionable whether QCD or the QPM can be applied 
at such low values of Q2. At x < 0.04 the asymmetry seems to stay constant at 
a value of At --- 0.06, then it rises smoothly to a value of A1 -~ 0.8 at the highest 
x point in agreement with the expectation A1 -+ 1 for x -+ 1 (i. e. the quark 
carrying most of the nucleon's momentum also is carrying most of its spin) [82]. 

The results for A d from SMC [11] and SLAC E143 [2] at the average Q2 of 
each x bin are shown in Fig. 54. 

The E143 data  have much higher precision (although the data  quality is not 
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as good as for the proton) and determine completely the x dependence in the 
region of overlap, where the agreement between the two experiments is good. The 
rise at  large x seems to be substantially weaker than for the proton. The very 
low x region x < 0.03 is again only covered by the SMC data. At x < 0.05 the 
asymmetry is very small, compatible with zero and possibly slightly negative. In 
Fig. 55 A d is shown as a function of Q2 [11] for fixed values of x in the region of 
overlap of the two experiments. No clear Q2 dependence of A d is visible within 
the accuracy of the data. The same conclusion can be drawn for the present data 
for A p [3]. 

Finally the results for A t obtained by the E142 [35], E154 [4] and HERMES 
[5] from 3He targets is shown in Fig. 56. The wave function of 3He is dominated 
by the configuration with the protons paired to zero spin. Therefore, most of 
the 3He asymmetry is due to the neutron [114]. A correction for the non-zero 
polarisation of the protons (-0.028 =t= 0.004) using the E143 results for A p and 
the neutron polarisation (0.86 + 0.02) [90] has to be applied. The agreement 
between all three experiments is excellent. The E154 data extend to lower values 
of x due to the higher beam energy and have much smaller error bars than those 
from HERMES and E142. The asymmetry is negative essentially over the whole 
x range covered by the data. The asymmetry at x ~_ 0.5 is much smaller than 
for the proton and slightly positive. This can be explained by assuming that the 
positive polarised d~-quark distribution is largely cancelled by the much smaller 
negative u~-quark distribution, which enters the cross section with a four times 
bigger charge weight. 
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Fig. 56. A~ versus x from measurements using a polarised 3He target. 

The  Polarised Structure Function gl  

Once the asymmetry A1 (x, Q2) has been experimentally determined gl (x, Q2) 
can be extracted from (131) and (132) using parametrisations of the unpolarised 
structure function F2(z, Q2) [40] and R(x,  Q2) [185]. The results for gP(x) for 
Q2 > 1 GeV z at the measured Q2 for the SMC and E143 data are shown in 
Fig. 57. The SMC data indicate a substantial rise at low x not expected from 
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x 

Fig. 57. gP(x) versus x from SMC and E143. 

Regge theory which predicts gl to become approximately constant for x -+ 0. 
This rise caused a lot of speculations as it could lead to a very large contribution 
to the Ellis-Jaffe integral and would correspond to a counter-intuitive very large 
polarised sea. Recently, however, SMC has presented preliminary results from 
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their high statist ics '96 proton run and the combined da ta  set f rom '93 and 
'96 [153]. Figure 58 shows the prel iminary results for gP together  with the '93 
data.  I t  can be seen tha t  the '96 da ta  are above the old da ta  essentially for all 

gP at measured Q2 preliminary 

-t 

O 93 

n 96 

A 93+96 combined 

-1 

.2 
10 10"1 X 1 

Fig. 58. Preliminary SMC results for g~ from the '96 data compared to the results 
from the '93 data [Mag 97]. 

higher x points. This leads to an increase of the Ellis-Jaffe integral by abou t  11 
percent compared  to the '93 value. On the other  hand at  low x the  new da t a  are 
substantial ly below the old ones. The  combined da ta  for gP are (apar t  f rom one 
outlier at x = 0.008) flat for all x < 0.1, with a value of gP(x) ~_ 0.4. 

Figure 59 shows the s tructure function gd(x) f rom SMC and E143, this t ime  
not at the measured Q2 but  evolved to a fixed Q2 = 5 GeV 2. (For the discussion 
of the evolution to a common Q2 see below). Above x ~_ 0.08 the da t a  behave 
quite smoothly  while at lower values substant ial  fluctuations can be observed. 
This is mainly  due to the fact tha t  here the measured asymmetr ies  are very small. 
Clearly these da ta  do not yet determine the shape of gd very well at  low x and 
there is plenty of room for improvement .  Figure 60 shows the s t ructure  function 
g[ extracted f rom the 3He data.  The agreement  between the three exper iments  
is excellent and a proof  tha t  sys temat ic  errors are well under  control. The  x 
dependence is completely determined by the high precision E154 data.  g[  is 
negative over the whole x range covered by the experiments.  I t  falls f rom zero 
at x _~ 0.5 to a value of - 0 . 5  at x = 0.02. The  low z behaviour  will be discussed 
below in some detail. 
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Fig. 59. gd(x) versus x from SMC and E143. 
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T h e  F i r s t  M o m e n t  o f  g l  

For a comparison of the data  with the Ellis-Jaffe and Bjorken sum rules the 
integral 

11 (Q2) = gl (x, Q2) dx (175) 

must be determined at fixed Q~ and an extrapolat ion into the unmeasured re- 
gions at high and low x must be made. The  mean Q2 is different for each x value, 
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therefore the da ta  have to be evolved to a fixed Q2. This requires an assumption 
about  the Q2 dependence of either A1 or gl. The  existing da ta  are consistent 
with the assumption that  A1 is independent of Q2 over the range covered by 
the data. Therefore in early analyses the Q2 evolution has been determined with 
(131) and (132) from the known Q2 dependences of F2(x,Q 2) and R(x,  V2). 

However, per turbat ive QCD predicts the Q2 dependences of gl and F1 to differ 
substantially at low x. Therefore more recently the machinery of NLO QCD 
analysis of polarised structure functions [55, 125, 119] has been used [12, 35] to 
fit the available data  and to determine from the fit the expected variation of 
gl(x,  Q2) with Q2: 

5gl(x, Q2, Q~) = grin'(x, V~) - gfl~t(x, Q2) (176) 

The measured gl(x, Q2) are then evolved from Q2 to Q02 by adding this correc- 
tion. As an example the results from different phenomenological analyses are 
shown for the '93 proton data  in Fig. 61. Despite the different procedures the 
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Fig. 61. Q2 evolution O[ gl (X, Q2) [rom different procedures. 

differences in their results are small compared to the statistical errors of the da ta  
(apart from the lowest x point) and they are covered by the systematic error 
quoted for the evolution uncertainty. The extrapolat ion to x -+ 1 is not critical, 
since F1 is small and dropping very fast in the high x region. SMC assumed 
A p = 0 .7+0.3  and A d -- 0 .4+0.6  in the region 0.7 < x < 1, while E143 assumed 
gp,d ¢x (1 -- x) 3 and HERMES assumed a linear rise in A~ from 0 at x = 0.6 
to 1 at x -- 1. However, the small x behaviour of gl (x) is theoretically not very 
well established and the evaluation of I1 depends critically on the assumptions 
made  for this extrapolation. From Regge theory [131, 105] it is expected that  for 
x --+ 0 gl behaves like x - a ,  where a is the intercept of the lowest contributing 
Regge trajectories, which is assumed to be in the range [-0.5,  0]. There  are also 
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several other predictions which assume a very different behaviour [17, 63, 94, 55]. 
In all analyses presented so far a simple Regge parametr isat ion has been used 
assuming g l ( x )  = coast, and quoting a systematic error for c~ varying in the 
range [-0.5,  0]. While with the present data  this procedure seems to be reason- 
able for gP and gd it turns out to be problematic for g~. Figure 62 shows the 
E154 da ta  together with g[ extracted from the '93 proton and the deuteron da ta  
from SMC. Here g~ has been obtained assuming 
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Fig. 62. g[ versus x in the low x region from E154 and SMC. 

gP + g~ 2gd/(1 -- 1.5WD) (177) 

where WD ---- 0.05 ± 0.01 is the D-wave state probabili ty in the deuteron. As well 
the E154 as the SMC da ta  are failing over the whole measured x range. Therefore 
the value of the Regge type extrapolat ion depends critically on the number  of low 
x points used to determine the constant and it might dramatically underest imate  
the contribution of the very low x region. An unconstrained power low fit g~ -- 
C / x  a yielded a -- 0.9 ± 0.2 resulting in /~1 as large as - 0 . 2  and diverges for 
a = 1. Therefore E154 does not dare to  quote a value for the Ellis-Jaffe integral. 
The situation might, however, not be as dramatic.  Since the prel iminary '96 
proton data  from SMC are much different from the published ones at low x 
also g[ is different. The preliminary data  points for g[ as presented by [153] are 
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approximately 0.5 + 1.2(x = 0.005), - 1 . 4  ± 0.8(x = 0.008), -1 .05  ± 0.4(x = 
0.0125) and -0 .5  ± 0.35(x = 0.025 and x = 0.035). These new da ta  are very 
well consistent with g[' being a constant around -0 .5  at low x. The  only two 
points which seem to be substantially lower might just be affected by statistical 
fluctuations, e.g. a too high gP(0.008) and a too low gd(0.0125). Anyway due 
to their large error bars they do not really constrain the behaviour at low x. 
Clearly high quality da ta  in the low x region are badly needed. At present the 
only realistic option to access this region experimentally would be polarised ep 
and ed collisions in HERA. This would require to accelerate and store polarised 
protons and deuterons in HERA [56]. This is presently under consideration [62]. 

Table  4. Integrals over the polarised structure function gt from recent experiments.  

Q2 i~-,e,, I~ igh I~ °w / i  

GeV 2 
10 0.130 0.0015 0.0042 0.136 

(0.013)(0.009) (0.0007) (0.0016) (0.013)(0.010) 

10 0.145 0.0015 0.0029 0.149 
(0.006)(0.009) (0.0007) (0.0007) (0.006)(0.010) 

10 0.0407 0.0006 0.0000 0.0414 
(0.0059)(0.0046) (0.0009)(0.0009)(0.0059)(0.0048) 

-0.046 
(0.013)(0.010) 

3 0.120 0.001 0.006 0.127 
L(0.004)(0.008) ,(0.001) (0.006) (o.oo4)(O.OlO) 

3 0.040 D.O00 0.001 0.042 
(0.003)(0.004) (0.001) (0.001) (0.003)(0.004) 

-0.037 
(0.008)(0.011) 

Exp. Target 

SMC p('93) 

SMC p('93+'96) 

SMC d 

n('93p+d) 

E143 p 

d 

n 

E142 n(3He) 

E154 n(aHe) 

HERMES n(aHe) 

3 -0.028 [}.003 -0.0053 -0.031 
(0.006)(0.006) (0.003) (0.0053) (0.006)(0.009) 

-0.036 -0.041 
(0.004) (0.005) (0.004) (0.006) 

2.5 --0.036 0.002 -0.005 --0.041 
(0.013)(0.005) (0.002) (0.005) (0.013)(0.007) 

lea 

0.170 
(0.005) 

0.170 
(0.005) 

0.071 
(0.003) 

-0.017 
(0.005) 

0.160 
(0.006) 

0.069 
(0.004) 

-0.011 
(0.005) 

-0.011 
(0.005) 

-0.011 
(0.005) 

In Table 4 the actual results for 11 from the different experiments are sum- 
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marised where the abbreviations 

~ max 
i~neas = gl  (x) dx,  

rain (178) 
I1 high ~ 1  = al  (x)  dx, 

m a x  

have been used. The numbers in brackets are the statistical and total systematic 
errors. 

f o  ~min i~ow = gl (x) dx, 

[ /1 = g l ( x )  dz 

2.8 C o m p a r i s o n  to  T h e o r e t i c a l  P r e d i c t i o n s  

Ell is-Jaffe  S u m  Rules  

Keeping in mind that there might be substantial uncertainties in the values of 
the experimentally determined integrals due to the not well known behaviour 
at low x, we can compare these results to the expectations of the Ellis-Jaffe 
sum rules, which are given in the last column of Table 4 for the Q~ value of 
the corresponding data. All experimental results differ by about 2-3 standard 
deviations from the Ellis-Jaffe value. As an example the Ellis-Jaffe prediction for 
the proton is shown in Fig. 63 as a function of Q2 together with the experimental 
results. The SMC point does not yet include the preliminary '96 proton data. 

0.20 
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e~o 
"~ 0.12 

0.08 

0.04 

Ellis-Jaffe 

E1~43 World SMCr? 
EMC/SLAC 

I I I I I 

2 4 6 8 10 
Q~(GeV 21 

12 

Fig. 63. Experimental results and theoretical expectation for the proton Ellis-Jaffe 
integral versus Q2. 

These move the point up, but at the same time the statistical error is reduced by 
about a factor of 2 and there remains a 2 standard deviations difference from the 
prediction. The dashed band is obtained from (157) using ga = 1.2601 + 0.0028 
and F / D  = 0.575±0.016. One can see that the integral decreases with decreasing 
Q2. This has to be taken into account when data from different experiments at 
different Q2 are compared. 
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Bjorken  S u m  Rule  

The relation between I p, I d and I[  and the sum rules is illustrated in Fig. 64. For 

0.1 

-0.1 

-0.2 

Q_~ = 5 GeV 2 

r l O t t ) l l  

0 0.1 0.2 0.3 

rp 

Fig. 64. Comparison of the combined results for I p, Ial and IF with the predictions of 
the Bjorken and Ellis-Jaffe sum rules. 

this comparison performed by SMC [12], all data from the different experiments 
were evolved to a common Q~ = 5 GeV 2 and then combined. The Ellis-Jaffe 
prediction is shown by the black ellipse in the narrow Bjorken sum rule band. 
Proton, deuteron and neutron results disagree with the Ellis-Jaffe sum rules 
but they confirm the Bjorken sum rule. This is shown in more detail in Fig 65 
where the data for I p - I~ of different experiments are compared to the Bjorken 
sum rule [35] with third order QCD corrections (156,160) and no higher twist 
corrections. From this figure it can be seen that the QCD corrections reduce the 
integral substantially below its QPM value ga/6 = 0.21. The agreement between 
theory and experiment is good. 

2.9 Extrac t ing  Informat ion  A b o u t  the  Spin Content  o f  the  P r o t o n  

Axial  Quark  Charges  

As discussed in Chap. 2.3 and 2.6 the first moments of the polarised structure 
functions can be used to extract the matrix elements of the axial vector currents 
a0, a3, a s .  This can be done either by using 

I P -  cNS(Q')12 (aa+-~asl)  +-----~--CS(Q2)ao(O2) (179) 
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Fig. 65. Comparison o f  experimental results and theoretical prediction for the Bjorken 
sum rule as a function o f  Q2. 

together with a3 = g A / g v  and as = 3 F  - D ,  or without the informations from 
the hyperon decays from a combination of I p, I d or I p, I t ,  respectively, together 
with g A / g g .  The detailed results of such an analysis, which has been performed 
by several groups, depend somewhat on the selection and treatment of the data. 
But the main message essentially stays the same. Therefore I just cite a recent 
global analysis performed by SMC [12]. Below we give the results from the 
combined analysis of all proton data at Qo 2 = 5 GeV 2 and in brackets those for 
an combined analysis of all proton, deuteron and neutron data. They obtain 

ao(Q~ = 5 GeV 2) -- 0.37 • 0.11(0.29 ± 0.06) (180) 

(which changes to 0.41 ± 0.11 when the preliminary '96 SMC proton data are 
included in the fit). This value of ao is about twice as large as the value (168) 
derived from the EMC/SLAC result using first order QCD corrections only. The 
individual contributions from the different quark flavours can be evaluated from 
(146). They are 

au = 0.85 ± 0.04 (0.82 ± 0.02) 

ad = --0.41 ± 0.04 (--0.43 :t: 0.02) (181) 

as = --0.07 ± 0.04 (--0.10 ± 0.02) 

Very similar results have been obtained by E142 [Ant 96] when using only their 
neutron data for such an analysis. In the QPM, a j  = A q i  and these results 
correspond to the values of AZ, Au, Ad and As in (169) from the ngive analysis. 

The  Polar ised Quark  and  Gluon  Dis t r ibu t ions  

However, as discussed in Chap. 2.4 due to the U(1) anomaly of the singlet axial 
current the axial charges receive a gluon contribution. The quark spin contribu- 
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tions AZ,  Au, Ad and As to the proton spin (171) differ from the axial charges 
ao, au, ad, as in a scheme dependent way. In the Adler-Bardeen scheme [55], 
where Aqf is independent of Q2, they are related by 

, . , 2 ,  
af = Aqf ~ ~ g t ~  ) (182) 

and the determination of the quark spin contributions to the nucleon spin re- 
quires an input value for Ag. The allowed values for Q2 = 5 GeV 2 are shown in 
Fig. 66 as a function of Ag [12]. A value of A Z  = 0.57 and As ---- 0 assumed for 
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Ag 

Fig. 66. Quark spin contributions to the proton spin as a function of the gluon contri- 
bution at Qo 2 = 5 GeV 2 in the Adler-Bardeen scheme. 

the derivation of the Ellis-Jaffe sum rules corresponds to Ag(Q~ _ 5 GeV 2) = 2. 
This consequently would require that also orbital angular momentum contribu- 
tions L~ are large. For Ag = 0 quark spins contribute only by about 30 to 40 
percent to the spin of the nucleon and strange quarks carry a small polarisation 
opposite to the polarisation of the parent nucleon. Therefore the new high qual- 
ity data have not changed the conclusions from the original EMC/SLAC finding. 
Only the error bars have become much smaller. 

Polar i sed  P a t t o n  Dis t r ibu t ions  F r o m  QCD Fi t  

An attempt has been made by several authors to extract informations about the 
polarised parton distributions and their first moments by fitting the measured 
structure functions gp,n,d using the QCD formalism described in Chap. 2.4. Sev- 
eral such polarised parton densities are collected and compared in [145]. It should 
be noted that presently such fits can only give hints about size and magnitude 
of polarised parton distributions as the quality of the data is much worse than 
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in the unpolarised case where the Q2 dependence of the structure functions has 
been measured with high precision for each value of x over a large range of Q2 
(see Chap. 1.4). In the polarised case we have only one or very few Q2 points for 
each x value (and these from different experiments). Depending on the data sets 
used and also on the flexibility of the input parametrisations rather different re- 
sults have been obtained. This is demonstrated in Fig. 67 [145], where a variety 
of possible solutions is shown. While 6u(x) seems to be rather well determined 
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Fig. 67. Polarised patton distributions at Q2 = 15 GeV 2 from different QCD analyses. 

as well in shape as in magnitude, the fits give a much larger possible range for 
6d(x). 6s(x) is essentially undetermined and could have as well positive as neg- 
ative sign. Very different solutions are also possible for 6g from such fits. From 
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the most recent analysis [30] the following parameters have been obtained: 

a0(Q 2 = c~) = 0.10 +0"t7 
--0.i0 

Ag(Q 2 = 1 GeV 2) = 1.6 :E 0.9 , (183) 
- s ( i 2 )  = n 11R+o.olo 

. . . . .  - - 0 . 0 2 4  " 

2 . 1 0  P o l a r i s e d  P a r t o n  D i s t r i b u t i o n s  F r o m  S e m i - I n c l u s i v e  D a t a  

We have seen in Chap. 2.8 that the determination of A ~  and Aqf from inclusive 
data requires assumption about the polaxised gluon distribution which is very 
difficult to access experimentally. QCD fits hardly constrain the z dependence 
and magnitude of the polarised gluon and seaquark distributions. A detailed 
understanding of the spin structure of the nucleon therefore requires that the 
x-dependence and the moments of the individual polarised quark distributions, 
separated into contributions from valence and seaquarks, the polarised gluon 
distribution and possibly also the orbital angular momentum contributions are 
determined separately. This can be achieved when not only the scattered lepton 
is detected, but also the leading hadron which contains the struck quark [112, 92]. 
Information can be obtained for the different contributions to the nucleon spin 
in the following way: 

- AV(Auv, Adv): Spin dependent differences in production of r + and r -  
- AS(Aft, Ad, A~): Spin dependent r -  or K-  production 
- Ag: Spin dependent J/~2 or D, D* production 
- Lz: possibly from azimuthal distributions of hadrons for transversaly po- 

larised targets or from deeply virtual Compton scattering (DVCS). 

For example A V  is determined as follows. The number of 7r + produced from a 
proton target with the beam and target spin antialigned, N~f ,  is proportional 
to 

(184) 4_+ .+ ~u (x)D a (z) + la+(x)D~+ (z) + (z) . 

The fragmentation functions D~ + are the probabilities that the struck quark 

will manifest itself as a 7r + with energy fraction z = E ~+/u. Hadrons with high 
z have a higher probability of containing the struck quark. There are favoured 

~r + fragmentation functions like D u , which I will denote as D1, and unfavoured 
fragmentation functions like D~ +, denoted as D2. Expressions similar to (184) 
can be written for the other spin orientation (where the q+ are replaced by q-  
but the fragmentation functions do not change) and for r -  production (where 
only the fragmentation functions change). If isospin and charge symmetry are 
assumed to reduce the number of fragmentation functions, then terms such as 

(u - fi+)(D1 - 02) = 
4 
~Uv + (D1 - D2) (185) 
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appear in the difference of ~r + and ~r- production in a particular spin orientation 
( h p r  + --~r-  "'t~ ) and the strange quark contributions cancel. Furthermore, taking the 
difference for both spin orientations we obtain the combination between the 
polarised valence quark distributions and the fragmentation functions 

N,,~+_,~-- ~r,~+_,~-(4 1 ) 
$ " t t  c< ~Su~-  5dv ( D 1 - D 2 )  • (186) 

Dividing this difference by the sum of the yields for the different spin orientations, 
the fragmentation functions cancel and we get 

A~+_~- _ 45uv - 6d~ ~,~+ ~- _ 5u~ + 5d~ (187) 
P 4 u ~ - d v  ' "*d 4uv+dv  

for proton and deuteron targets. The unpolarised valence quark distributions 
are very well known from the fits to the unpolarised data so it is possible to 
deduce the polarised valence quark distributions and their moments from pion 
production on two different targets. The HERMES experiment has specially 
been designed to explore this kind of physics and after the upgrade with a RICH 
counter in '97/98 it will have full particle identification for all momenta bigger 
than about 1 GeV. It should be able to determine the valence quark distributions 
to the nucleon spin to about 10 percent. 

The SMC experiment has made a first study of semi-inclusive hadrons in 
polarised deep inelastic scattering on hydrogen and deuterium [14]. The SMC 
spectrometer does not have the capability to identify pions so the data include 
all hadrons. The asymmeties for positive and negative hadrons are then given 
by 

A ~ - Y]~f e}6qlDiq  (188) 
Ete}qsD~  ' 

where 

Dq=e h ~ = DQ (z) dz , (189) 
r a i n  

with Zmi n ---- 0.2. The fragmentation functions are the same for the polarised and 
unpolarised case, provided the hadrons are spinless or it is summed over their 
spin orientations. They were measured by the EMC in exactly the same energy 
region for up and down quarks fragmenting into charged pions, kaons and protons 
[36]. By making assumptions about the polarised sea like 6fi = 5a SMC was able 
to extract the quark helicity distribution functions from a combination of the 
hadron asymmetries measured with the proton and the deuteron targets and 
the corresponding inclusive asymmetries. Figure 68 shows the measured virtual- 
photon asymmetries for the production of hadrons and Fig. 69 the extracted 
polarised valence-quark 5Uv (x), 5dr (x) and antiquark 6~t(x) helicity distributions 
(Auv in the figure is equivalent to 5Uv in our notation). The polarisations of the 
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valence quarks obtained from this analysis are within the statistical accuracy 
independent of x and amount  to 

5Uv(X) _ 0.5 + 0.1 5dr(x) _ - 0 . 6  4- 0.2 
Uv(X) dr(x)  

Auv = 1.01 4- 0.19 4- 0.14 (190) 

Ad~ = -0 .57  4- 0.22 4- 0.11 

Aft = Ad = -0 .02  4- 0.09 4- 0.03 . 

The polarisation of the up-quarks is positive and that  of the down quarks nega- 
tive, while the polarisation of the sea is compatible with zero. The  solid lines are 
the limits from the unpolarised quark distributions. The accuracy of the da ta  
will be improved by about  a factor of two when all SMC data  will be included. 

Detailed informations on polarised sea quark distributions will be obtained 
by HERMES from data  on ~ -  and K -  production. 7r- is a (rid) combination. 
Since the charge of the fi is twice that  of the d, it dominates the scattering 
process which is therefore sensitive to antiquark distributions. The K -  is a (fis) 
combination and containes only sea-quarks. K -  production should therefore be 
very sensitive to sea quarks and the sensitivity to the strage quark distribution 
is enhanced. 

J / ~  and D mesons contain one or two charm quarks and result from the 
process of photon-gluon-fusion. This makes the (polarised) charmed meson pro- 
duction sensitive to the (polarised) gluon distribution. After the upgrade with 
the RICH detector HERMES will be able to s tudy especially D product ion via 
the r -K-decay  channel and will therefore have some sensitivity to the polarised 
gluon distribution. 

Recently the COMPASS [96] experiment has been approved at CERN as an 
upgraded continuation of SMC. Among other things the experiment will concen- 
t ra te  on the measurement of Ag/g via open charm production. The projected 
precision for the measurement in the range 0.07 < x < 0.4 is 6(Ag/g) ~_ 0.10. 

2.11 S u m m a r y  a n d  O u t l o o k  

Deep inelastic scattering experiments on fixed targets have provided us in the 
last years with an enormeous amount  of data  and detailed informations about  the 
quark-gluon structure of the nucleon. Unpolarised quark and gluon distributions 
and their Q2 dependence have been determined with high accuracy, the infor- 
mation about  R(x, Q2) and higher twist effects has been substantially improved. 
Recent inclusive measurements with polarised beams and targets have consider- 
ably improved our knowledge of the polarised structure function gl(x, Q2) and 
give us already some insight into the internal spin s tructure of the nucleon. 

The E155 and HERMES experiments will soon yield inclusive da ta  with 
even higher precision. These inclusive measurements are, however, insufficient 
for a precise determination of the polarised gluon distribution or the flavour 
decomposition of the nucleon spin. Semi-inclusive data  are required to obtain 
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these informations. SMC has already produced first low statistics results, pre- 
cision measurements on this subject will be performed by HERMES and later 
by COMPASS. A combination of these experiments, which cover a different 
kinematic range, will presumably yield precise informations about the polaxised 
gluon distribution. 

First measurements on the second spin structure function g2 (x), which might 
contain informations about a twists3 component arising from quark-gluon cor- 
relations axe now just becoming available, much better data can be expected in 
the future from E155 and HERMES. HERMES has also the ability to measure 
additional structure functions like the higher multipole structure function b d (x), 
which arises from binding effects in the deuteron, or L~d(x), which is sensitive 
to gluon components in the wavefunction of the deuteron, or the chiral odd 
structure function hi (x). 

Finally the polarisation of the HERA proton ring, which is presently under 
discussion, will allow measurements at high Q2 and low x and such to study the 
spin structure of the nucleon in a new kinematic domain. 
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1 General  Introduct ion  

T h e  dynamical structure of the proton [1] evolved from the pioneering deep 
inelastic scattering (DIS) experiments at SLAC, through higher energy fixed 
target lepton-proton DIS measurements till the present results of the HERA ep 
collider. The proton has three valence quarks and a vast number of additional sea 
partons, each carrying a fraction x of the proton's momentum. This information 
is obtained by 'looking' at the proton with a probe of virtuality represented 
by its negative squared mass Q2. The higher the Q2 the smaller the objects 
'inside' the proton that can be 'observed'. These objects carry a fraction x of 
the proton's momentum. The regions in the x - Q  2 plane studied before HERA 
started to operate were up to about 300 GeV 2 in Q2 and down to about 10 -2 
in x. The HERA collider has extended the plane in both directions by more than 
two orders of magnitude, as can be seen in Fig. 1. 

What do we expect to learn in this new kinematic region? How does the 
proton 'look' when probed at very high Q2? Can one detect substructure in the 
partons or in the electron? Are there 'exotic' particles such as leptoquarks? Can 
one detect supersymmetric particles? What is the x distribution of the partons 
within the proton when probed at different values of Q2? How many partons are 
there as x becomes smaller and smaller? 

The above is only a partial list of questions hoped to be answered by the 
HERA data. The topic of these lectures is 'Low-x physics at HERA'. Studying 
the low-x region actually means studying the high probe-proton center of mass 
energy W. We will discuss the new results obtained in this wider kinematic re- 
gion. Since high energy phenomena have been well described within the Regge 
picture, there will be a chapter devoted to this subject. Next, the DIS kinematics 
will be introduced and the proton structure functions will be defined. This will 
lead to the chapter discussing the QCD factorization theorem, the definitions of 
the parton distributions and their evolution with Q2, with a special emphasis 

* Lectures at the workshop "Nonperturbative QCD" organised by the Graduierten- 
kolleg Erlangen-Regensburg, held on October 10th-12th, 1995 in Kloster Banz, 
Germany 
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Fig. 1. A contour of the x-Q 2 plane, indicating the regions covered by the fixed target 
experiments and those at the HERA collider. 

on their behaviour at low x. The DGLAP and the BFKL evolution equations 
will be reviewed, different parton density parameterizations will be compared 
and some methods to obtain the gluon density distribution in the proton will be 
described. The following chapter discusses the structure function of the photon, 
the patton density distributions in the photon and the picture of the photon, 
real and virtual, emerging from the HERA results. One of the unexpected re- 
sults of HERA, diffraction in DIS, is preceded in the next chapter by a general 
introduction about diffraction in hadroproduction, the concept of the Pomeron 
is introduced and the large rapidity gap events in DIS are analysed from the 
point of view of a partonic structure of the Pomeron. The final chapter is an 
attempt to give an operational definition to 'hard' and 'soft' interactions and 
the interplay between the two. This will include a discussion about the energy 
behaviour of the total DIS cross section as well as that of exclusive production 
of vector meson in DIS. 

Before indulging on this extensive program, I would like, as part of this 
general introductory chapter, to summarize the highlights of the HERA results 
so far. We start with a short description of the machine and the two detectors. 
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Fig. 3. The ZEUS detector. 
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1.1 HERA,  H1 and ZEUS 

HERA [2] is the e+p colliding beam facility at DESY in Hamburg. It collides at 
present 27.5 GeV e + with 820 GeV protons, providing a center-of-mass energy 
of 300 GeV. The two beams can be stored in up to 210 bunches each, and collide 
every 96 nanoseconds at two interaction points. 

Each of the two interaction regions is surrounded by a 4~r detector. In the so- 
called north hall, the H1 detector [3] is stationed, while the ZEUS detector [4] is 
in the south hall. Both detectors use a sampling calorimeter, tracking detectors 
and muon detectors. The H1 detector is depicted in Fig. 2 and the ZEUS detector 
is shown in Fig. 3. 

Both the H1 and the ZEUS experiments have additional detectors down- 
stream and upstream up to a distance of about 100 meters from the interaction 
point. Their purpose is to measure protons and neutrons in the proton beam 
direction (denoted throughout this text as the 'forward' region), and electrons 
and photons in the electron beam direction. The photon detector is used to 
measure the luminosity by using the bremsstrahlung process ep -~ ep7 which 
can be accurately calculated through Quantum Electrodynamics (QED). This 
measurement provides the luminosity with an accuracy of about 1-2 %. 

As is the case with any new machine, the integrated luminosity starts at a 
low value but gradually keeps increasing, as shown in Fig. 4. 

The present level of luminosities is very well suited for studying the low and 
intermediate Q2 physics. It is planned to upgrade [5] HERA in about 2-3 years 
to increase the integrated luminosity by an order of magnitude by going to the 
low/3 mode. 

1.2 HERMES and H E R A - B  

The two beams are in separate rings and can be used also for other purposes. 
Thus, in addition to the two collision points, the electron beam, which can have a 
polarization of about 60 %, interacts with a polarized stationary target. At that 
interaction point, situated in the east straight section, the HERMES detector [6] 
records the results of the interactions of the polarized particles. The aim of this 
experiment is to investigate the origin of proton and neutron spin in inelastic 
electron-nucleon collision. 

The proton beam will be used by the HERA-B experiment [7] to be installed 
in the west area. This experiment will use the halo of the proton beam to produce 
B-mesons. The experiment objective is to study C P  violation in the B-meson 
system. 

1.3 High Q2 Neutral and Charged Currents 

The ep reactions can be classified into two categories. The events in which the 
outgoing lepton is an electron are called neutral current (NC) events. In this 
case the particle exchanged between the initial lepton and the proton is a neutral 
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Fig. 4. The delivered luminosity by H E R A  versus t ime for the years 1992-1995. 

particle, predominantly a 7 at lower Q2 values and when Q2 becomes high enough 
the Z ° starts to also contribute appreciably. The other class of events are those 
where the outgoing lepton is a neutrino. In this case the charged W + is exchanged 
and the events are called charged current (CC) events. These two classes of events 
can be represented by the two simple exchange diagrams below: 

e v 

(1.1) 

neutral current DIS charged current DIS 

The NC events can be identified by observing the scattered electron which 
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makes sure to balance the transverse momentum, PT. In the case of CC events, 
the neutrino is undetected, resulting in a large missing transverse momentum.  
Figure 5 shows on the top a typical NC event in the ZEUS detector,  where one 
sees the scattered electron leaving a track in the central tracking detector  and 
depositing energy in the rear par t  of the calorimeter (RCAL). The current jet  is 

m 

ZR 

! 
/ 

[11 '! I 
ZR 

Fig. 5. A typical example of a neutra/current event (upper part) and charged current 
event (lower part) as observed in the ZEUS detector. 

produced in the upper part  of the forward calorimeter (FCAL) and the remnants  
of the proton produce energy in FCAL around the beam pipe. In the lower par t  of 
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the figure one sees an example of a CC event, identified by the large missing PT. 
Also here one can see the current jet and the remnants depositing energy in the 
FCAL. 

Using the transverse momentum information and the electron identification 
it is possible for both (e + and e - )  beams to isolate the NC and CC events. In 
the 1993 data sample 436 NC events and 23 CC events with Q2 > 400 GeV 2 
were found. 

The cross-section for the unpolarized e-p NC DIS can be expressed as [8]: 

d2°" 2 re2  [1 (1 y)2] x,T'3 } 
dx dQ 2 - x Q '  { [1 + (1 - y)2] .T2 + - - (1.2) 

The NC structure function ~'2 can be written as: 

.T'~c = ~ q ~ -  x 
.f 

+ ] (1.3) 

where q]  is the sum of the momentum density distributions of the quarks and 
antiquarks of flavour f ,  each having the electric charge el. The a's and the v's 
are axial and vector couplings of the electron or the quark to the Z ° which has 
the mass Mz. 

For CC reactions, neglecting heavy quarks, the cross section is given by: 

/ 
dxdQ - - - - ~  - 27r ~ , M ~ + Q  2] 2xc°s2Oc[u+c÷(1-Y)2(-d+-$)] (1.4) 

where GF is the Fermi constant and Mw is the mass of the W boson. 
While the CC events are produced purely by a weak interaction, the NC 

events will be dominanted by electromagnetic interactions at lower Q2, while at 
higher Q2 the weak interactions will start to play an important role. The ex- 
pectations were thus that at some high enough value of Q2 the cross sections of 
the NC and CC will be of comparable magnitude. These expectations have been 
borne out by the first HERA data, taken in 1993 where both collaborations, 
H1 [9] and ZEUS [10] have measured NC and CC events at high Q2. The differ- 
ential cross section of the NC and CC reactions as function of Q2 are shown in 
Fig. 6. 

One can see that in the region of Q2 of the order of M~, the two cross sections 
are equal. In addition one observes that the shape of the CC cross section is 
sensitive to the W mass. By fitting the distribution to (1.4), one obtains the 
result Mw = 76 :t: 16 + 13 GeV. 
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Fig.  6. The differential cross section d o / d Q  2 as function of  Q2 for NC and CC events 
as measured in the ZEUS detector using the 1993 data. The dashed line which does 
not describe the data assumes an infinite mass for the W.  
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1.4 D e t e r m i n a t i o n  o f  t h e  S t r o n g  C o u p l i n g  C~s 

Mult i- jet  production in NC DIS events can be used to determine the strong cou- 
pling constant a s .  In particular, the measured rate of 2 + 1 jets, where the '+1 '  
stands for the proton remnant  jet, can be compared to theoretical  calculations 
in which a s  is the only free parameter.  

By using some kinematical cuts [11] which exclude the problematic region 
where higher order effects are impor t an t  and jets are not  well measured in the 
experiment,  the value of a s  was determined [12, 13] in three Q2 regions in the 
range 120 < Q2 < 3600 GeV 2, and was found to decrease with Q2 (Fig. 7), 
consistent with the running of the strong coupling constant.  

The  value of a s  expressed at the Z ° mass was determined to be: 

as(Mzo) = 0.117 :t: 0.005(stat) +0.004, -0.005 (SySexp) :~: 0.007(systh) 

which is in good agreement with the results obtained from the e+e - event shape 
(0.121 =t= 0.006) and Z ° width (0.124 ± 0.007). 

1.5 T h e  S t r o n g  R i s e  o f  F2 at L o w  w 

From the measurements of the cross section of NC DIS events one can unfold 
the proton structure function [14] F2 which is a function of x and of Q2. The  
da ta  from fixed target  experiments indicated tha t  for a given value of Q2 the 
structure function F2 rose slowly with decreasing x and seemed to level off with 
further decrease. The new data  [15, 16] of HERA, which allowed to measure F2 
for higher Q2 and lower x, showed that  it rises sharply with decreasing x. This 
can be seen in Fig. 8 where the measurements of F2 are shown for Q2 values 
from 1.5 GeV 2 up to 5000 GeV 2 and down to x values close to 10 -5. The rise 
with decreasing x is associated to  the increase of the gluon density as x gets 
smaller. One can see from the lines in Fig. 8 tha t  QCD can accommodate  this 
behaviour in the whole kinematic region where data  exist. 

Another way [17] to look at the behaviour of F2 is through its connection to 
the total  7*P cross section: 

47r2a Q2 + 4m2pX 2 
a~o~(~* p) = Q2(1 _ x) Q2 F2(W 2, Q2) (1.5) 

Figure 9 shows the behaviour of atot(7*p) as calculated from the da ta  of 
F2(W 2, Q2) through (1.5). Also included are measurements of the real 7P cross 
sections as function of W 2. The curves are the expectations of the ALLM [18, 19] 
parameterization.  While the real photoproduct ion cross section shows a mild rise 
with energy, one sees a steeper rise for the higher Q2 data. There  clearly is a 
transition. At which Q2 value does it happen? Is it gradual or is it sharp? Wha t  
does the transition mean? We will discuss these questions in later chapters. 
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1.6 Large Rapidity Gap Events in DIS 

The characteristic topology of a NC DIS event is expected to include a curre: 
jet as a result of the interaction of the probing virtual  photon with one of t] 
partons from the proton. In addition there is the proton remnant  jet, usual 
concentrating around the beam pipe. The region between the two is filled wi" 
more particles resulting from colour forces and gluon radiation. Thus the d] 
t r ibution of the angle 0 between a produced particle and the incoming prot~ 
direction, or equivalently the pseudorapidity ~, defined as ~/ -- - I n  t anS /2 ,  
expected to fall exponentially. 

~I0 3 

C 

10 2 

10 

1 

- 2  0 2 4 6 8 

Fig. 10. The distribution of  $he maximum rapidity ~lmax of  a calorimeter cluster iz 
DIS event. 

One can look at the variable ?']max, defined as the maximum rapidi ty o] 
calorimeter cluster of DIS events, displayed in Fig. 10. While the shaded area 
the behaviour which was expected of 7/max as described above, the data  [20] h 
a large excess of events in the region of ~max < 1.5. This corresponds to eve1 
with a large rapidity gap, of at least 2.8 units. The  properties of these events w~ 
consistent with being diffractively produced. Thus the HERA experiments [~ 
21] found  that  about  10 % of all the DIS events are due to a diffractive proce 
a fact tha t  came as a surprise and was not included in any of the DIS generat~ 
written before the HERA experiments. 

1.7 S u m m a r y  

In this in t roductory chapter, some of the highlights of HERA have been descri[ 
in a very general way. The following have been mentioned: 

- The first experimental  evidence to the expectat ion of the electroweak the~ 
that  when Q2 is close to M z  2 , the electromagnetic and the weak force beco 
of equal magnitude. 
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- From the jet rates of the NC DIS events one can determine c~s with high 
precision and can observe the running of ~xs in one experiment. 

- The proton structure function F2(x,Q 2) shows a dramatic increase as x 
decreases for a large span of Q2 values. 

- Large rapidity gap events were observed in NC DIS reactions, indicating the 
presence of diffractive mechanisms also at higher Q:. 

The first two items do not belong to the scope of these lectures and thus one 
is referred to the original publications for further details. The last two items will 
be expanded in the future chapters. 

2 I n t r o d u c t i o n  t o  R e g g e  T h e o r y  

2.1 General Introduction 

Our understanding of particle physics has evolved in two directions. The static 
properties of the hadronic spectrum profitted from the breakthrough of the SU (3) 
theory of Gell-Mann and Ne'eman [22], which relates particles of different in- 
ternal quantum numbers but the same spin-parity (and mass, in perfect SU(3) 
symmetry). The hadron dynamics has been investigated by many theories. One 
of the successful ones which we will describe in more detail here is the Regge 
theory [23, 24]. 

The Regge theory investigates the dynamics of hadrons by studying the two- 
particle scattering A + B --+ C + D. It relates the spin J and the mass M of 
particles with the same internal quantum numbers (strangeness, isospin, baryon 
number, etc.). When one plots all known particles in the Chew-Frautschi [25] 
plane (J vs M ~) they all seem to lie on a straight line called a Regge trajectory. 
As an example we show this plot for some of the meson particles (Fig. 11). A 
similar one exists for the baryons. 

The Regge theory predicts some characteristics which can be tested experi- 
mentally for the behaviour of hadronic interactions at high energies. One such 
prediction is that the high energy behaviour of all processes where one exchanges 
the same quantum numbers should be similar. 

2.2 One Pion  Exchange (OPE) 

The early description of two-body reactions was the picture of one pion exchange 
(OPE). For instance, the reaction rp  --4 pp could be well described by the 
following diagram: 

Ir p 

| 7 f  
! 

p p (2.1) 
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Fig. 11. Chew-Frautschi plot: Spin J versus mass squared for different mesons. The 
lines are the corresponding Regge trajectories. 

I t  was realized soon tha t  this picture is incomplete. There  is no justification 
for ignoring the exchange of two or more pions or of other particles. In some 
reactions the exchange of a pion is even not possible, like in elastic r p  scat ter ing 
where, due to G-par i ty ,  one cannot  exchange a pion but  a p: 

I p  
! 

p p (2.2) 

Such problems are avoided in the Regge theory. Here one exchanges one or 
more trajectories and instead of speaking about  a particle tha t  is exchanged one 
talks about  a Reggeon exchange. The  exchange of a Reggeon is equivalent to the 
exchange of many  particles with different spins: 

= = 0  + t J = l  + t J = 2  
' , 

+ . . .  

(2.3) 
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2.3 s a n d  t C h a n n e l  

Before continuing with the development of the Regge theory, a short section to 
define two Lorentz invariant variables which are useful for further  discussion. 
Let us denote by Pi the four-vector  of particle i. The four momentum transfer  
squared t between A and C (or equivalently between B and D) is then defined 
a S :  

t = (PC - PA)  2 = (P~ + PC) 2 = (PB -- PD)  2 = (PB + PD) 2 (2.4) 

Note that  t can also be viewed as the center of mass squared of the crossed 
reaction B + / ~  ~ A + C. The center of mass squared s of the system A + B (= 
C + D) is given by: 

s = (PA + PB)  2 = (PB - PA)  2 = (Pc + PD) 2 = (Pc - PD) 2 (2.5) 

Thus s can also be interpreted as the four momentum transfer squared from B 
to J] of the process B + / )  - + / i  + C. 

One can therefore look at a given two-body reaction either in the s-channel  
or in the t-channel,  as described in the following diagram: 

A C 

! 
s-channel -+ I 

B D 

J" t-channel 

(2.6) 

We can now resume the Regge theory discussion. 

2.4 T h e  Froissart  B o u n d  

A fundamental  reason why single particle exchange as described above cannot  be 
the correct description of the two-part icle hadronic processes at high energies 
is the following. Assume an elastic collision between spinless particles, all of 
mass m, exchanging a meson of mass M and spin J:  

m m 

| 1 
i ~_--:-M~ M 

m m (2.7) 
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The transi t ion ampli tude can be wri t ten as: 

T(s ,  t) ,,, Pj (cos  0t) 
t - M 2 (2.8) 

where P j  is the Legendre-function and 0t the scat tering angle in the  center 
of mass sys tem of the t -channel  reaction B + / )  -+ / i  + C. The  angle can be 
expressed as: 

2s 
cos 0~ = 1 + t - 4m ---------~ (2.9) 

At fixed t, as s grows, cos 0~ ~ s, and thus 

T(s ,  t) s ~ y  s g (2.10) 

For J > 1 this violates the Froissart  [26] bound. W h a t  is the Froissart  bound? 
Froissart  showed, tha t  in the par t ia l  wave expansion of the scat ter ing ampli-  

tude all part ial  waves with l _> /max = C v ~ I n s  (where c is some constant)  are 
negligible. Summing the part ial  wave series and assuming m a x i m u m  scat ter ing 
in each part ial  wave he obtained: 

a < _ c l n  2s  as s - -~c~ .  (2.11) 

The constant  c is l imited theoretically: 

7V 
c < (2 .12)  

Thus the cross section is bound by: 

a < ~ In 2 s -~ (60 mb) In 2 s. 
m~ 

(2.13) 

This bound is known as the Froissart bound, also referred to somet imes as the 
Mart in  [27]-Froissart bound. 

2.5 R e g g e  T r a j e c t o r i e s  

In this section we will describe the main steps leading to the Regge trajectory.  
Let us assume tha t  there exists a bound s ta te  in the t -channel  with angular  
m o m e n t u m  l -- L and mass MB < 2m. The  t -channel  par t ia l  wave ampl i tude  
fL (t) has then a pole at t = tB -- M 2. Similarly, if in the t -channel  there is a 
resonance with mass MR, w i d t h / "  and I -- L, one gets a pole at  a complex value 
t = tR = M ~  - iMRF.  

The sequence f t ( t ) ,  l = 0 ,1 ,2 , . . .  can be generalized to a function f ( l , t )  
which should be equal to f l ( t )  for l = 0, 1, 2, .... This function is defined also for 
complex l. The  sequence of poles for l = L1 at  t = t l ,  l = L2 at  t = t 2 , . . ,  is 
interpreted as a single moving Regge pole at  l = a(t) .  The function a(t )  is a 
t ra jec tory  function such tha t  a ( t l )  = L1, . . . .  
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When a( t )  is equal to an integer value L at t = tL, this corresponds to 
a bound state  or resonance with l = L and mass and width given by tz = 
M~ - iMI, F.  The t ra jec tory  which gives a resonance with l = L and complex 
tL will also cause a pole at the real value t = M~ when 1 has the complex value 
L + Imc~(t). Therefore the real values tt where Reo~(tt) = L give the  masses 
M 2 = tt of the particles with spin L. This can be demons t ra ted  in Fig. 12 where 
the p t ra jec tory  is determined f rom the charge exchange react ion 7r-p --+ ~V0n. 
When  the t ra jec tory  gets to the mass  of the p its value is equal to the spin of 
the p: c~(M 2) = 1. In the Chew-Frautschi  plot shown earlier in Fig. 11 one sees 
more examples of trajectories having the same feature. 

,S 
s -  channel re~oo 

1.5 

t-_m~, 

0 0.5 ' tlGeVZ) 
t -  channel region 

Fig. 12. The p trajectory as determined from the charge exchange reaction 7r-p -+ 7r° n. 

Originally, Regge was interested in the behaviour  of the t -channel  scat ter ing 
ampl i tude in the unphysical limit cos St --> - c o .  The usual par t ia l -wave series 
diverges when [ cos0t[ = 1 +e .  So he used the function f ( l ,  t) to convert  the sum 
into a contour integral in the complex l plane, which allowed cos at --+ - c o .  He 
obtained 

Tt(t ,  s) ,., (cos Or) a(t) (2.14) 

where a( t )  is the t ra jec tory  whose real par t  is largest for the given t. 
I t  was Mandels tam who realised tha t  the limit cos ~t --+ - c o  in the t -channel  

reaction B + b --+ _~ + C corresponds to s --+ co in the s -channel  reaction 
A + B -+ C + D (see Eqn. (2.9) with fixed (negative) t). 

Since the transi t ion ampli tude fulfils Ts(s, t) = Tt(t ,  s) one gets at fixed t: 

T,(s ,  t) ,,, s ~(t) (2.15) 

More precisely, at fixed t: 

s) ~(t) 
T (s,t) .y(t) (2.16) 
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where so is a scale factor. The function 7(0  is closely related to the residue 
of f ( l ,  t) at the pole l = c~(t). 

In the relativistic case one needs to consider the signature ( + for even J ,  
- for odd J)  and one gets: 

T~(s , t )  = 7+(t) 1 ± e -i~a(t) ( s ~  =<0 (2.17) 
sin ~r~(t) \ S o /  " 

The functions 7±(t) factorize. This means that  for A + B -+ C + D one can 
write: 

~(t)  = ~Ac( t ) '~D( t ) -  (2.1S) 

If several sets of t-channel internal quantum numbers axe possible, one in- 
cludes a contribution from the leading trajectory of each type. 

2.6 S h r i n k a g e  

Before the Regge theory was fully developed, one had a simple phenomenological 
description of a large number of two-body reactions. The energy behaviour of 
the forward differential cross section of these reactions could be described by the 
form: 

d~ A ( s )  2~' '  ~-i(s,t = o) = ~ 7o (2.19) 

The values of aeff obtained from fitting the da ta  are given in Table 1. Regge 

Table 1. Coef~cients ae~ and the possible exchanged particles for various processes. 

R e a c t ~  

. KoA I K',K  I 02 I 

r - p - - + p l r -  [ Zl [ 0 [ 
7r+p --+ p~+ 

theory identifies O~eff with a( t  = 0) of the dominant Regge trajectory contributing 
to the reaction. The value aCt = 0), also denoted sometimes by a0, is called the 
intercept of the Regge trajectory. 

The Chew-Frautschi plot shows tha t  the trajectories are linear in t and can 
be expressed in a simple form: 

~(t)  = oo + ~'t  (2.20) 
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The  slope of the  t ra jectory,  a I is posi t ive and  has the  value a '  ~ 1 GeV -2  for 
mos t  t rajectories .  

I f  one pole domina tes  one can wri te  the  differential cross sect ion in the  form: 

. . . . .  (2.21) 
dt  s ~ \ S o /  s 2 k S 0 /  

__ "~(t) ( S ] 2 ( a ° - l )  e2a ' t ln( ;~)  (2.22) 

-- ~ \ S o l  
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This expression gives both  the s and the t dependence of the cross section. 
Since t < 0, the exponential cutoff in t becomes sharper as s increases. In other  
words, the higher the energy, the larger the exponential coefficient of the dif- 
ferential cross section, where the growth of the steepness is determined by cd. 
This phenomena is called shrinkage and one says tha t  dtr shrinks as s grows. An 
example [28] of the shrinkage phenomena is shown in Fig. 13 for the elastic pp 

reactions. We will return to the shrinkage phenomena in the last chapter.  

2.7 T h e  P o m e r o n  

From the form of (2.19) one can see that  the forward scattering ampli tude of 
the elastic scattering has an energy dependence given by: 

da  ( s ~  2(~°-1) 
-d-~-(s, t = 0) ~ - -  . (2.23) 

\So / 

The total  cross section is related to the imaginary part  of the forward elastic 
scattering amplitude by the optical theorem. Therefore one can write: 

,,~ - -  . (2.24) atot \ so / 

Since all the known trajectories of existing particles have c~0 < 1, the con- 
clusion from (2.24) is tha t  atot should decrease with energy. Experimentally,  
however, atot seemed to approach a constant value as s increased. This is shown 
in Fig. 14 where the total  cross section for various particles on proton target  is 
plotted as function of the incoming beam momentum [28]. Note tha t  this figure 
already includes later da ta  which showed that  at high energies the total  cross 
section starts to increase. This was not yet known at tha t  t ime and the belief 
was that  it reaches a constant energy-independent  value. 

In order to keep the Regge picture consistent with the experimental  data,  
one needed to assume the existence of a t ra jec tory  with an intercept  ao ~- 1. 
Though this idea was originally suggested by Gribov, the t ra jec tory  was named 
by Gel l -Mann after Pomeranchuk, who derived in 1958 his theory [29] about  the 
asymptotic behaviour of the differences of cross sections. The t ra jec tory  was first 
called the Pomeranchukon trajectory, and was later abbreviated to the Pomeron.  
This t ra jectory (lP) was assumed to have the form: 

= + (2.25) 

with an intercept of c~ (0 )  -~ 1 and a slope [30] of a ~  _ 0.25GeV -2. These 
values are different from all those of the known trajectories,  some of which are 
given in Table 1. So far no particle was found which corresponds to the Pomeron 
trajectory. 
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Fig. 14. Total cross section measurements/'or various reactions. 
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T h e  P o m e r a n c h u k  T h e o r e m  Since we mentioned earlier the Pomeranchuk 
theorem, lets say a few words about it. Pomeranchuk studied [29] the high energy 
behaviour of the differences between the total cross sections, Aa, defined as: 

Aa ~ a(.AB) - a (AB)  (2.26) 

for any particles A, .4 and B. The scattering should become purely 'diffractive' 
(in the optical sense) at high energies. The elastic scattering should be just the 
shadow of the inelastic reactions. In this picture, via the optical theorem, one 
expects the amplitudes to be almost purely imaginary. Under the assumption 

that Re T ( s, O) 8-~o~ 
Im T(s,  0) 0 (2.27) 

and if a(.AB) --+ C1 and a(AB)  --> C2, Pomeranchuk proved that C1 = C2. This 
led to his theorem that at high energies the differences between particle and 
antiparticle cross sections should vanish: 

Aa -~ 0 (2.28) 
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This is known as the Pomeranchuk theorem. The  experimental  da ta  seem to 
support  this prediction, as can be seen from Fig. 15. 
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Fig. 15. Total cross section differences for various reactions. 

2.8 High Energy Behaviour of  f f tot  

As we mentioned above, the total  cross section actually starts rising with energy. 
What  changes does one have to make to the Pomeron t ra jec tory  parameters?  
Clearly, in order to describe the rise, the intercept has to be bigger than  1. By 
how much? One way to find out is to fit the total  cross section da ta  to the form 
given in (2.24). However, we know that  there are also other trajectories which 
can be exchanged in addition to the Pomeron.  

Donnachie and Landshoff (DL) [31] a t tempted  a global fit to all existing atot 
data. They  realized that  all the Reggeon intercepts can be represented by one 
effective intercept  having a value of am(0) ,-~ 0.55. Also, the elastic scattering 
data  can be described by having two exchanges, a Reggeon and a Pomeron.  

A A 

B B (2.29) 
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When a Reggeon is being exchanged, one usually exchanges quantum numbers, 
while in the case of the Pomeron exchange there is the exchange of vacuum 
quantum numbers. Using the optical theorem, one expects also the total  cross 
section to be described by the sum of these two exchanges. Thus motivated,  DL 
fitted the total  cross section data  to a sum of two terms: 

atot = X s  aP(°)-I + Y s  ~m(°)-I (2.30) 
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F i g .  1 6 .  Fits of a simple Regge form containing two terms to tota/cross section mea- 
surements of pp, ~p, r±p, K±p, pn and ~n reactions. 

In order to get the rising cross section at high energies they parametr ized the 
Pomeron intercept as e ~  (0) = 1 +e. The vMue of the Reggeon intercept was fixed 
to 0.55 (actually 0.5475). In addition, DL used the Pomeranchuk theorem for the 
first term which describes the Pomeron exchange. Since at high energies only the 
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Pomeron term remains, they constrained the coefficients X to be the same for 
particle and for antiparticles. For example, they require X ( r  +) = X(~r-) .  The  
combined fit can be seen in Fig. 16 and gives a good description of the data.  The  
resulting value for the Pomeron parameter  was e __- 0.08 (actually 0.0808). The 
rising power of the total  cross section is small enough and violates the Froissart 
bound only at energies of about  103 TeV. 

O'tot(~'p) at H E R A  Energies By using the results of their  fit and Vector 
Dominance Model (VDM) [32] arguments,  DL [31] predicted the behaviour of 
the total  photoproduct ion cross section: 

atot(TP) = 0.0677s °'°s°s + 0.129s -°'4525 (2.31) 

where the units are such that  the cross section is in rob. All existing da ta  above 
v ~ = 6 GeV up to the highest center of mass energy for which da ta  existed on 
atot(TP), about  20GeV, were well described by the predictions of DL. It was 
very interesting whether the prediction would hold also for higher energies and 
thus the first measurements of HERA were eagerly awaited. This was in particu- 
lar the case since in addition to DL and other [18] Regge motivated predictions, 
there were so-called 'mini-jet '  models [33] which predicted tha t  the total  photo- 
production cross section at HERA energies (x/~ ~- 200 GeV) could be as large as 
about  1 mb, compared to about  0.15 mb as predicted by the Regge based models. 

What  does photoproduct ion have to do with HERA? As already mentioned 
in the earlier chapter, the exchanged particle at the lepton vertex in NC events 
is a virtual photon, provided the Q2 is not very large. As we will show in the 
next chapter, Q~ is a function of the energies of the incoming (E) and outgoing 
(E ~) electrons and the scattering angle 0 of the outgoing electron with respect 
to the incoming proton direction. The exact relation is: 

Q2 = 2EE ' (1  + cos S) (2.32) 

One sees tha t  when the outgoing electron continues close to  the incoming elec- 
tron's  direction (8 ~ ~), Q2 ~ 0 and can be considered as the exchange of 
an almost-real  photon. The two experiments, H1 and ZEUS, have each [34, 35, 
36, 37] a small calorimeter at a distance of about  30 m from the interaction 
point which allows to detect electrons which are scattered by less than  5 mrad 
with respect to the incoming electron direction. This ensures tha t  the virtu- 
ality of the photons is in the range 10 -s  < Q2 < 0.02 GeV 2, with the median 
Q2 ~ 10-5 GeV 2. A diagramatic example of a photoproduct ion event is shown in 
Fig. 17. Since the cross section for photoproduct ion reactions is large compared 
to tha t  of DIS events, even a low luminosity run can be sufficient for determin- 
ing atot('YP). Thus this was the first measurement [38, 39] done when the HERA 
collider was turned on in summer of 1992. Using the photoproduct ion events 
taken during a net running t ime of 7 minutes, the first measurement  of atot (TP) 
was obtained at v ~  = 200 GeV (Fig. 18). Although the measurement  had a large 
uncertainty, it was enough to establish that  there is no dramatic  rise of the cross 



Low-z Physics at HERA 371 

m,,,.. 
mr,.-- 

L. J 

yp 

F C A L  B C A L  R C A L  

P 

s 
e 

LUMI 

Fig .  1T. A diagramatic example o f  a photoproduction event in the ZEUS detector, 
where the scattered electron is detected in the small angle electron calorimeter LUMIE.  
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section between 20 and 200 GeV, thus excluding some of the predictions. Clearly 
the Regge based predictions, labelled DL [31] and ALLM [18], were consistent 
with the data. 

2 . 9  S u m m a r y  

In this chapter the following subjects have been covered: 

- We have shown that  the simple single particle exchange picture is in variance 
with the Froissart bound. 

- The Regge t ra jectory has been introduced and some of the propert ies have 
been reviewed for the trajectories which have corresponding particles. All 
known trajectories seem to be linear and can be expressed as a( t )  = ao +a~t ,  
with an intercept not bigger than 0.5 and a slope of about  1 GeV -2. 

- The shrinkage phenomena has been introduced for further discussion in the 
chapter on diffraction. As long as the slope of the Regge t ra jec tory  is n o n -  
zero, one expects to have a steeper fall of the differential cross section as one 
goes to higher energies. 

- The Pomeron t ra jectory was introduced in order to explain the behaviour 
of the total  cross section at higher energies. This t ra jec tory  has so far no 
corresponding particle. It has an intercept which is somewhat bigger than  1 
and a slope of about 0.25 GeV -2. 

- The Pomeranchuk theorem was mentioned. It predicts tha t  the differences 
between the total  cross section of particles and antiparticles should approach 
zero at high energies. 

- We introduced the two- term expression of Donnachie and Landshoff which 
is based on the Regge approach and can explain all the da ta  on to ta l  cross 
sections. By using a fixed effective intercept of about  0.55 for the Reggeon 
trajectory, and by using the Pomeranchukon theorem for the Pomeron term, 
DL obtained an intercept of 1.08 for the Pomeron by performing a joint fit 
to all the da ta  existing in 1992. 

- After explaining how the total  7p cross section can be measured at HERA,  
we showed that  the measurement of atot (Tp) at HERA shows a mild increase, 
like other hadronic cross sections and thus consistent with the predictions of 
Regge based models and excluding those which predicted a dramat ic  rise. 

3 D e e p  I n e l a s t i c  S c a t t e r i n g  a t  H E R A  

In this chapter we will first discuss the kinematical variables used in DIS, de- 
scribing first the fixed target  configuration and then that  of the colliding beams 
at HERA. The second section will be devoted to defining the inelastic s t ructure  
function and its relation to the total  ~*p absorption cross section. The ratio of 
the longitudinal to transverse part  of tha t  cross section, R will also be discussed. 
In the third section we will mention shortly the impor tant  issue of radiative cor- 
rections and the chapter will finish with a section describing the experimental  
determination of the structure function. 
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3.1 K i n e m a t i c s  

We shall start  with the most general case of a deep inelastic scattering of a 
lepton with mass ml and four vector k ( E t , k )  on a proton with mass mp and 
four vector p ( E p ,  p ) ,  as depicted in Fig. 19. The outgoing lepton has a mass of 
m~ with four vector k t (E[ ,  k')  and the scattered hadrons emerge with a mass 
m h  and four vector p h ( E h ,  Ph). The exchanged particle can be a gauge boson 
% Z ° or W +, depending on the circumstances. The four vector of the exchanged 
boson is q(qo, q). 

k(El,k) 

p(Ep,p) ~"  ph(Eh~ph) 

Fig. 19. Deep inelastic lep ton-proton-scat ter ing .  

With these notations one can define the following variables: 

q = k - k '  = Ph -- P (3.1) 

v -- P ' q  (3.2) 
mp 

y - P ' q  (3.3) 
p . k  

W 2 = (p + q)2 (3.4) 

s = (k + p ) 2  (3.5) 

The meaning of the variables ~ and y is most easily realized in the rest frame of 
the proton (see fixed target subsection). The variable W 2 is the center of mass 
squared of the gange-boson proton system, and thus also the invariant mass 
squared of the hadronic final state. The variable s is the center of mass squared 
of the lepton proton system. 

The four momentum transfer squared at the lepton vertex can be approxi- 
mated as follows (for ml, m~ << E,  El): 

q2 = (k - k') 2 = ra~ + m~ 2 - 2 k k '  ..~ - 2 E E ' ( 1  - cos0) < 0 (3.6) 

Note that  in this expression the scattering angle 0 is defined with respect to 
the incoming lepton direction. The variable which is mostly used in DIS is the 
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negative value of the four momentum transfer squared at the lepton vertex: 

Q2 _= _q2 (3.7) 

One is now ready to define the other variable most frequent in DIS, namely the 
dimensionless scaling variable x: 

Q2 
= (3.s) 

2 p ' q  

T h e  Phys ica l  M e a n i n g  o f  t he  B j o r k e n - x  Var iable  In order to understand 
the physical meaning of the scaling variable x, defined by Bjorken, let us consider 
the diagram presented in Fig. 20. 

k' 

Fig. 20. Explanation o f  the Bjorken x variable 

An exchanged boson with four momentum q interacts with a parton having 
a fraction z of the incoming proton four momentum, producing a parton with 
four momentum p'. Using the definitions in the previous section one can obtain 
the following: 

(zp + q)2 = p,2 (3.9) 
z2p2 _ Q2 + 2 z p .  q = m~, (3.10) 

which finally leads to: 

( Q2 + m~, _ z2p2 = x l + m  v, - z m v (3.11) 
z = 2 p . q  -2p 'q  ] 

If one can assume that the partons have zero mass, which is a good assump- 
tion in the infinite momentum frame, then one gets: 

x = z (3.12) 

This means that x is the fraction of the proton momentum taken by the parton 
which is hit by the exchanged boson in the DIS interaction. 
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F i x e d  T a r g e t  K i n e m a t i c s  (p  ~ 0) Before HERA s tar ted  to operate ,  all DIS 
experiments  [40, 41, 14] were on fixed targets  (p = 0). For this case, some of the 
variables defined earlier have a simple physical interpretat ion.  The  variable u: 

v - -  P " q - p "  (k  - k ' )  _ m p ( E  - E ' )  _ ( E  - E ' )  = qo (3.13) 
?'rt, p ?'r~p fl'bp 

Thus, for fixed target  experiments,  u is the energy of the exchanged boson. 
Another  expression for v is: 

P"  (Ph -- P) m p ( E h  -- m p )  E h  m p  (3.14) 
I ] - -  - -  ~ - -  

TIT, p ~"~p 

which is the energy transfer at the hadronic vertex. 
The second scaling variable defined by Bjorken is y. I t  has the following 

meaning in the case of a fixed target:  

p .  q m p v  v 
y _- - -  - - (3.15) 

p . k  p . k  E 

which is the fraction of the incoming lepton energy carried by the exchanged 
boson, also called inelasticity. I t  can be calculated either at  the lepton vertex or 
at the hadron vertex: 

~ - E '  leptons (3.16) 
Y =  Eh-Emr hadrons 

E 

Clearly one sees tha t  the value of y is l imited to: 

0 <_ y < 1 (3.17) 

What are the limits on the value of the Bjorken-x? The Bjorken variable x 
can be written as Q2 Q2 

x - 2 p .  q 2 r n p v  (3.18) 

On the other hand we can express W 2 as follows: 

2 2 p . q x + 2 p . q =  m 2 + 2 p . q ( 1 - x )  (3.19) W 2 = (p+q)2 = p 2 _ Q 2 + 2 p ,  q = m y _  

Since the invariant mass squared of the hadronic sys tem has to be equal or bigger 
2 than  the proton mass squared, W 2 > m y ,  one gets: 

0 < x < 1 (3.20) 

which is consistent with the physical interpretation of x being the fraction of the 
proton's momentum carried by the struck parton. 

The following relations are useful if one wants to calculate the kinematic 
limits which one can achieve on Q2 and x in the fixed target experiments. 

Q2 
2 + 2p- q 2 + _ _  (3.21) s = (p + k) 2 = p2 + k 2 + 2p.  k = m p  - m v 

y x y  
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which leads to: 
Q2 = (s - m 2 ) x y  (3.22) 

Thus the maximum value of  Q2, given a lepton beam of energy E,  is: 

2 2 ~. 2ropE (3.23) Qmaz = s -- m p  

and the minimum value obtainable for x is: 

Q~ Q2 
(3.24) 

Xmin  8 -- m 2 2 m p E  

The fixed target  experiments used typically muon beams with energies of a 
few hundred GeV. Thus, for example, for E = 200GeV, and Q2 = 4 G e V  2, the 
minimum value of x is xmin ~ 10 -2. 

H E R A  K i n e m a t i c s  At HERA, an electron (we will use electron to mean both  
electron or positron) beam of energy E collides with a proton beam of energy Ep. 
At present E = 27.5 GeV and Ep = 820 GeV. The +z  axis is chosen in the pro- 
ton beam direction and the scattering angle of the outgoing electron is measured 
with respect to the proton beam. The four vectors of the incoming electron (k), 
outgoing electron (k ' ) ,  incoming proton (p) and outgoing hadrons (Ph) are de- 
fined as follows: 

k'  E I nO 
: P :  Ph = 

\ E '  cos O ] Ep 

Eh 

Pzh  

I P Y  h 

\ P z h  

(3.25) 

Since the detectors at HERA have an almost complete 4 r  coverage, one can 
determine the x and Q2 DIS variables by more than one method [42]. One can 
use the outgoing electron, the outgoing hadrons or a combination of both.  This 
allows therefore a consistency check on the determinat ion by comparing the 
results from the different methods. Each method has its kinematical range in 
which it can determine the variables with a bet ter  precision than  the others. In 
the following we will discuss the three different methods. 

Electron variables: In this case, as used to be done in the fixed target  experi- 
ments, only the four vector of the scattered electron is used: 

Q2 = _ ( k _ k , ) 2  = 2 E E ' ( l + c o s O )  (3.26) 

y -- 
p k  I p k  I 

P ' q  - 1  - 1  
p .  k p k  2 E E p  

= 1 - E v E '  - E v E '  cos 0 E '  
2 E E p  = 1 -  ~--~(1- cosO) (3.27) 
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Using Q2 and y one can get x: 

Q2 
x - (3 .28)  

4EEpy  

Some further useful relations in this case can be obtained in the following 
way: 

Q2 
- -  - 1 + cos 0 
2 E E  I 

2E(1 - y) 
E '  - 1 - cos 0 (3.29) 

Q22E(1 - Y) = sin 2 0 
2EEl2 

Therefore one gets: 
Q2 _ E'2 sin2 ~ _ P2e (3.30) 

1 - y  1 - y  

Since in the NC case the PT of the electron balances tha t  of the hadronic final 
state, the last relation means also that  Q2 = p2h/(1  _ y), a relation to be used 
in the description of the hadronic method. 

Hadronic variables: One can clearly determine the y, Q2 and x variables if one 
measures all the outgoing hadrons. However, some of the hadrons escape through 
the uncovered region in the beam pipe, as shown in the sketch in Fig. 21. Nev- 
ertheless, as was shown by Jacquet and Blondel [43], one can still determine to 
a good approximation the above variables. 

e 

Fig. 21. A sketch for understanding the Jacquet-Blondel method. 

P 

The variable y can be calculated in the following way: 

P" (Ph -- P) P "Ph EpEh - EpPzh Eh -- Pzh (3.31) y . . . .  
p .  k 2EEp 2EEp 2E 
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Since most  of the missing hadrons which do not make  it into the detector  have 
a small pT, their  contribution to Eh --Pzh is negligible and thus one gets a 
good es t imate  of y using this formula. When  determined this way, it is usually 
denoted YJB, namely y Jacquet-Blondel .  

The other two variables can be now calculated in the following way: 

Q2 _ P~h + P2h (3.32) 
1 - YJB 

and 
Q2 

x -- (3.33) 
4 E E p y j B  

The double angle method: When using a method  based on a mix ture  of the elec- 
t ron and the hadron variables, one can choose different combinations.  The  one 
described here is called the double angle (DA) method  and uses measurements  
of two angles. One is the scattering angle 0 of the outgoing electron (see Fig. 22). 
The other angle is tha t  of an object  which has a simple meaning in the naive 
par ton  model: assuming tha t  the struck par ton  is massless, it would scat ter  by 
an angle 7. In this interpretat ion the PT of the proton remnant  is zero. Note tha t  
these assumption are necessary only for the physical in terpreta t ion of the angle 
7- The calculation is however exact. 

initial state final state 

e -..._ _..... p proton 
f --.. pr=0 

27.5GeV 820GeV 
"t mathematical object 

m=0 

Fig. 22. The two angles used in the double angle method. 

Defining the four vector of the scat tered electron k'  and tha t  of the ma the -  
mat ical  massless object  F as follows: 

k ' =  E '  n0  F =  F 7 (3.34) 

\ E ' c o s 0 /  \ F c o s T /  

one gets from the scat tered electron measurements:  

E '  sin 2 0 
Q2 _ (3.35) 

1 - y  
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and 
E I 

y = 1 - ~-~(1 - c o s O )  

Using the measurements coming from the hadrons one obtains: 

and 

(3.36) 

2 
PTh = 7 (3.37) Q2 = F2 sin2 

1 - y  1 - y  

E h  -- P z H  F(1 - cos 7) 
- ( 3 . 3 s )  

Y - 2E  2E  

which leads to the calculation of the angle 7: 

P~h - -  ( E h  - -  pzh) 2 
COS7 = p2 h + (Eh -- pzh) 2 (3.39) 

We are now ready to define Q2 and x using only the two angles (in addition 
to the given incoming energies of the beams). The variables calculated this way 
usually have the subscript DA to denote tha t  they were obtained through the 
double angle method: 

( 3 . 4 0 )  

and 

[ sin7(1 + cos0) ] 
Q~A = 4E2 [s in7  +---~in0 -_ ~ + 7)J 

XDA = ksin 7 + sin 0 -- sin(0 + 

The advantage of the DA method is tha t  one is less sensitive to  a scale un- 
certainty in the energy measurement of the final state particles since the angle 7 
is obtained by ratios of energies. 

Kinematical limits at HERA: What  are the kinematical limits on x and Q2 
that  one can reach at HERA? Since s = 9 × 104 GeV 2, this is also the value 
of 2 Qm~x. With  the present luminosities, the two experiments have enough da ta  
for measurements up to about 104 GeV 2, as shown in Fig. 1 of the first chapter.  
Amazingly enough, the HERA experiments made big efforts to obtain da ta  at  
very low Q2, down to about  0.2 GeV 2, for reasons to be mentioned later. Thus 
they also reached very low x values, close to 10 -6. 

One of the aims of these measurements is to obtain the s tructure function of 
the proton, which is the subject of the next section. 
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3.2 I n e l a s t i c  S t r u c t u r e  F u n c t i o n  

In analogy to the Rosenbluth formula [44] in the elastic case the deep inelastic 
cross-section can be written as [45]: 

d2a 4ol2E'2 [ ~ ~] 
--dl2dE' - Q4 2W1 sin 2 ~ + W2 cos 2 (3.42) 

where W1,2(u, Q2) are two structure functions which can be related to the ab- 
sorption cross section of the virtual  photon 7*. In order to see the relation, note  
that  the DIS cross section is obtained from a product  of two tensors, a leptonic 
one and a hadronic tensor. The hadronic tensor WaS can be related through the 
optical theorem to the 7*P cross section, as shown in the following diagram: 

WaS c~ ~ (3.43) 

The cross section for a real photon is defined as 

47r2c~ a* S- o~ot(~p _+ x)  = ---k--~ ~ w . s  (3.44) 

where K is the flux factor, ex is the polarisation vector and A is the helicity of 
the photon. The flux of real photons is K = u and the allowed helicities are 
A = :t:l. 

In order to extend the discussion to virtual  photons, we need to know the 
polarization vectors and the flux of a virtual  photon beam. To this end we will use 
the expressions of the polarization vectors derived for a massive vector meson: 

e~l ---- i - -~ (O ;  1, :ki, O) 

i ~ ( ~ / ~  + Q~; 0, 0, ~) 

(3.45) 

(3.46) 

From pari ty conservation one can write (for the case where the incoming lepton 
is e or # and the target  proton is unpolarized) a+l  = a -1 .  The two independent 
cross sections are defined as: 

1 
o~ = ~(o+1 + ~ - , )  o~ = oo (3.47) 

where O" T and aL are the transverse and longitudinal 7*P cross section. 
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F l u x  of  V i r t u a l  P h o t o n s  The definition of the flux is a mat ter  of convention, 
but the principle is that  in the limit of approaching the real photon case (Q2 __4 
0), the flux K should be equal that  of a real photon beam (K --4 v). We shall 
mention two flux conventions, that  of Gilman [46] and tha t  of Hand [47]. Gilman 
adds the Q2 of the virtual photon to the flux definition: 

K Gi~ = ~/W + Q~ (3.4s) 

Hand defines the flux K as that  energy which a real photon would need in 
order to create the same final state. Thus g Hand c a n  be calculated using the 
following argument. The invariant mass squared of the hadronic final state for a 
7*P interaction is given by: 

2 + 2mpV - Q2 (3.49) W 2 = (p + q)2 = rnp 

The same quantity for a real photon of energy K Hand is given by: 

W 2 = rap2 + 2mpKHand ( 3 . 5 0 )  

Therefore Q2 
K Hand - -  v (3.51) 

2mp 

Clearly both definitions fulfil the requirement that  when Q2 __4 0 then K --4 v. 
The two structure functions W1,2(v, Q2) are related to the total  7*p trans- 

verse and longitudinal absorption cross sections in the following way: 

WI(~,,Q2 ) = K K_. .~ . , ,  
471-2 O/VT 

K Q2 . . 
w~(~" Q2) = 4~o~ Q: + ~,2 (°~. p + oZ ") 

(3.52) 

(3.53) 

T h e  R a t i o  R ---- o'r./O'r The ratio of the longitudinal to transverse 7*P cross 
section carries information about the spin of the quarks in the quark-parton 
model. In order to see that  we can use (3.53) to write: 

v 2 
~L w2 (1+ ~ )  - 1 (3.54) R - -  - 
O" T W 1 

One can use QED to calculate the exact expressions for the two structure func- 
tions W1 and W2 for the case of the scattering of two point-like spin-1/2 fermions 
e# -+ e#: 

w~ ~ = 1~(1 Q: 2~-~v- ) (3.55) 

Q2 Q2 
wZ" = 4m~vS(1 2 ~ )  (3.56) 
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By substi tuting this result into (3.54) and using the ~-function condition, one 
gets: 

R"  = 4m2 Q 2 ~  
Q2 0 (3.57) 

Adopting this results for quarks, one expects R to approach 0 if quarks have 
spin 1/2. In other words: 

1 
aL --+ 0 for spin ~ (3.58) 

How can one measure R experimentally? One can rewrite the cross section 

d2~ 

d ~ d E '  -- [ ' (aT + eaL) (3.59) 

given by (3.42) in the form: 

where the photon polarization e is expressed as: 

V 2 0 --1 [1+ tan2 (3.60) 

and the photon f l ux / "  is written in the form: 

K a  E'  1 
(3.61) F -  21r2Q2 E 1 - e  

Thus the cross section can be writ ten as: 

d2a ( aL ~ rat(1 eR) d ~ - E '  - FaT 1 + = + aT / 
(3.62) 

The  polarization e is a function of v, Q2 and 0. By keeping v and Q2 fixed and 
by changing 0 and E one expects a straight line when plott ing the differential 
cross section as function of e, as shown in Fig. 23. Thus one can fit directly the 

d 2 c 

d/~dE ~ 

:P 

E 

Fig. 23. The differential cross section as function of the photon polarization • for fixed 
v and Q2. 



Low-x Physics at HERA 383 

d2ff intercept (= ['aT) and the slope (= R) and once R is known, d-Wd-gr depends 
only on one structure function. 

We see therefore that measuring R not only gives information about the spin 
structure of the proton constituents but is also necessary if one wants to obtain 
the structure functions from the measured cross sections. Before describing how 
one determines the structure functions, one needs to take into account an addi- 
tional important effect, namely radiative corrections, which are described in the 
next section. 

3.3 Rad i a t i ve  Cor r ec t i ons  

In order to determine the structure functions, one needs to know the Born cross 
section. However, the measured cross section includes in addition to the Born one 
contributions from a whole set of electroweak radiative processes. The radiation 
can come from the electron (either from the incoming or from the outgoing one), 
it can come from the hadron side, by having a quark radiate a photon and there 
are interference terms. On top of that there are loop and vertex corrections. In 
the following we present some of the diagrams included in the calculations of 
radiative corrections. 

First, the radiation from the electron line. These contributions are the source 
of the largest corrections. In the diagrams (a) and (b) the simplest O(a 3) graphs 
for real photon emission at the leptonic vertex and in (c) and (d) the O(a  3) 
contributions from virtual photons associated with the leptonic vertex are shown. 

e 

P P P 
(a) (b) (c) (d) 

(3.63) 

The radiative corrections coming from the hadron line are less important 
than the contributions of photons radiated off the electron. The following three 
diagrams have to be corrected for the radiation of a photon from quarks: 

(a) (b) (c) 

(3.64) 

Finally there are the interference term corrections described diagramatically 
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aS: 

eft e X 
q q 

(a) (b) 

(3.65) 

One can get a feeling for the magnitude of these corrections [48] at HERA from 
the plots shown in Fig. 24. As one sees, the corrections depend strongly on the 
kinematical region and for small x and high y can be very large. 

1001 

50 

-50 

k/51, % 

0.01 

J | - -  

~.o 

O) 

,oi 6z ' % O 0.5 1.0 

- (b) t - -  0.1 0 .01 - -  y 

o.5 

0.9 - 0.9 

0 1 -10 
0.5 ~.o y 

Fig. 24. QED radiative corrections: (a) from the lepton line, (c) from the quark lines, 
and (b) from their interference. 
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3.4 Exper imenta l  Determinat ion  of  the Structure Funct ions  

The expression of the Born cross section contains two s t ructure  functions, W1 
and W2. One can use instead the s tructure function F1 and F2 which are related 
to the former ones as follows: 

FI = WI (3.66) 

vW2 
F2 - (3.67) 

mp 

Thus one can write the Born cross section in the form: 

d2~rBorn 47rOt2 y2 
dxdQ 2 - xQ 4 [-~2xF1 + (1 - y)F2] (3.68) 

The  first measurements  of the s t ructure  functions showed tha t  the  da t a  were 
compat ible  with the Cal lan-Gross  [49] relation 

2xF1 (x) = F2(x). (3.69) 

Wi th  more  precise DIS da ta  covering a larger range of x and Q2 a clear scale 
breaking was observed and thus one needs information about  the difference be- 
tween the two structure functions, defined as FL -- F2 - 2xF1. By defining the 
rat io of the s t ructure  functions RL as follows: 

RL =-- FL (3.70) 
F2 

one can express the Born cross section as: 

d20"B°rn 47rO~2 -- Y. "i  y2 -- ~ / . ~  +~ - - 7 - ) "  Y+--1+(1-y)2 (3.71) dxdQ2 xQ  +RL, 
However, in addit ion to the Born cross sections there are radiat ive processes. 
So the cross section which includes these radiat ive processes is expressed in the 
form: 

d2arad 4rC~2 F2Y+ (1 - y2 dxdq  xQ4  RL) [1+ (3.72) 
where 6~(x, Q2) are the contributions coming from the radiat ive processes. 

If one had an ideal detector which measures every outgoing part icle f rom 
the reaction with a 100 % precision and with a background-free  identification of 
the processes, this would be the cross section from which the s t ructure  function 
would be determined. In reality one measures something which is somewhat  
different than  the above expression. The measured cross section is connected to 
the one in (3.72) in the following way: 

d 2 a m e a s / /  d2a tad 
dxdQ 2 - dx'  dQ '2 dx, dQ, 2 Acc(x', Q'2)S(x, Q2; x ' ,  Q,2) + background 

(3.73) 
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Here Ace is the probabili ty tha t  an event which is produced at x ~, Q,2 will be 
seen in the detector,  which is thus a function of the geometry and efficiency of 
the detector,  and S is a smearing function which gives the probabil i ty tha t  an 
event which is produced at x I, QI2 was measured at x, Q2. 

The experimental  procedure to measure the structure functions includes thus 
the following steps: 

- One selects a sample of events likely to be NC DIS events. This means tha t  
one needs to have a good electron finder [50] which has both high efficience 
and high puri ty for electron identification. This requirement usually results 
in the fact tha t  only electrons having energies above a certain values can be 
identified. 

- The values of x and Q2 are determined by one of the methods described in 
the kinematic section. 

- The  background coming from non-DIS events has to be subtracted. An ex- 
ample of such a background could be photoproduct ion events, where the 
scattered electron remained undetected in the beam pipe, in which a r ° 
was produced which decayed into two photons, one of which produced an 
electromagnetic shower and was mistakenly identified as an electron. This 
background can be measured in certain kinematic regions and has to be 
est imated in others. 

- Using the luminosity measurements one gets the measured cross section, 
from which one has to unfold the one given by (3.72). 

- One needs to apply the radiative corrections to get the Born cross section. In 
order to be able and do the calculations, one needs good parameterizat ions 
of s t ructure functions at lower Q2 down to the photoproduct ion region. 

- Finally, in order to get the structure function F2, one needs information 
on FL, or equivalently on RL. This ratio was measured [51, 52] in some of 
the fixed target  experiments but  is limited to relatively high x values. There  
is no measurements on R in the HERA x range and so far one needs to  
rely on its estimates calculated from QCD. This is one of the sources of the 
systematic errors of F2. 

We have already shown the latest results of F2 as measured in the whole 
kinematic region, as function of x, for fixed values of Q2 (Fig. 8), and which 
show the dramatic  rise of the structure function as x decreases. Here we show 
the values of F2 as function of Q2, for fixed values of x (Fig. 25). In addit ion 
to the HERA measurement,  the figure includes data  from some fixed target  
experiments. A clear scale breaking with Q2 is observed. The  curves axe the 
results of a QCD fit to the data. 

3 . 5  S u m m a r y  

In this chapter we discussed the following issues: 
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- The different kinematical variables which are used in the study of DIS have 
been defined. In particular, we saw that the scaling variable x, defined by 
Bjorken, can be interpreted as the fraction of the proton momentum carried 
by the struck parton, under the assumption of an infinite momentum frame 
with massless partons. The variable y is the inelasticity of the exchanged 
photon in a system where the target proton is at rest. In that system u is 
the energy of the exchanged photon and y is the fraction of the incoming 
lepton taken by the exchanged photon. 

- We described three different methods for the determination of x and Q2 at 
HERA: the electron method, the hadron method (Jacquet-Blondel) and a 
mixed method using two angles (double-angle). We calculated the kinematic 
limits at HERA obtaining 2 Qmax = 9 × 104 and x,~in ~-- 10 -6. At present 
HERA has measurements at Q2 values as high as about 10000 GeV 2 and as 
low as 0.2 GeV 2. 

- The proton structure functions have been defined and their relation to a('7*p) 
has been given. Two definitions of the fluxes for this relation, the Gilman and 
the Hand one have been given. The ratio of the longitudinal to transverse 
cross section of the 7*P system was defined and we showed that it can be 
determined by measuring the DIS cross section as function of the photon 
polarization, for fixed u and Q2. 

- The radiative processes have been described briefly and their importance 
in the structure function determination has been discussed. The size of the 
corrections depend on the kinematical regions in x and y and can be very 
large in the high y region. 

- The different steps necessary for the experimental determination of the pro- 
ton structure function have been described. One of the missing measurements 
in order to reduce the systematic error on F2 in the HERA kinematic region 
is that of R, the ratio of the longitudinal structure function FL to F2. 

4 P a r t o n  D i s t r i b u t i o n s  i n  t h e  P r o t o n  

In the last chapter we have seen how to obtain the proton structure function 
from the measured DIS cross section. What does it teach us about the structure 
of the proton? How can one use it to learn about the behaviour of the proton's 
constituents? 

In order to do so, one needs a theory which connects the parton distributions 
within the proton to its measured structure function [53]. For short distance 
forces one can use perturbative calculations in QCD to get such a relation. How- 
ever, there are also long distance dependencies where non-perturbative effects 
are present. One of the most important results of field theory is the proof that  the 
structure function can be factorized into short distant dependencies, calculable 
in perturbative QCD (pQCD), and non-perturbative long distance dependences. 
This QCD factorization theorem will be the subject of the first section. 

We will proceed with the DGLAP evolution equations of partons and discuss 
the structure function in the low-x region. This will lead to the BFKL evolution 
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equation and to a short discussion about saturation. The last two sections will 
be devoted to paxameterizations of parton distributions in the proton and to 
experimental determination of the gluon density in the proton. 

4.1 The  QCD Factorization T h e o r e m  

The QCD factorization theorem [54] discusses the situation where one measures 
an inclusive reaction, like the NC DIS one: ep -+ eX. In this case one can 
prove that the structure functions can be factorized into short-distance depen- 
dences calculable in pQCD and into long-distance dependences which need to 
be taken from outside the theory. If we denote by F~ h the structure function 
for a hadron h which is probed by a vector V, where a can be 1, 2 or 3 (in case 
of Z ° exchange) the QCD factorization theorem allows to write the following 
equations: 

1 
F Vh[x / d z - v i  ( x  Q2 ]£2 (:~S(]~2)) fi/h(z'"F'"2) (4.1) 

1,a, ,Q2)=  ~_  7 C l ' a  z ' p 2 ' p =  
f , f ,9 x 

1 

FVh(x'Q:) = E_ dzCVi }, #2, , ols(# 2) fi/h(Z, , F , ,  2) (4.2) 

f,Y,g 

The coefficient functions C Vi are independent of long distance effects and are 
computable in pQCD. The functions fi/h are the paxton distribution functions 
which are specific to the hadron h but are universal as fax as a and V are 
concerned. They are not calculable in pQCD but have to be measured experi- 
mentally. 

There are two mass scales in the problem. One is the renormalization scale #. 
The other one is the factorization scale #F- If we denote by k 2 the off-shellness, 
then for k 2 > ~2 one has the coefficient functions while for k 2 < ~2 one has 
the paxton distribution functions. This can be pictured for the DIS case in the 
following diagram: 

cVi 

V 

klh 
#F 

(4.3) 

In the absence of any interaction (7* is absorbed by the quark i which con- 
tinues) these functions are, in leading order, the following: 

C:i(°)(x) = e25(I - x) (4.4) 
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= - z )  (4 .5)  

Beyond the leading order, there is considerable ambiguity and one has to  specify 
in which scheme one works. There are usually two different schemes: the DIS 
and the MS schemes. In the DIS scheme, order by order in per turbat ive  theory 
all corrections to F~ h are absorbed into the distribution functions of q and 
(for # = #F = Q): 

C~q(x) = e~5(1 - x) (4.6) 

= - x)  (4 .7)  

c g(x) = 0 (4 .8)  

The MS scheme (modified minimal subtraction) follows from the idea of dimen- 
sional regularization by ' tHooft  and Veltman [55]. 

4.2 T h e  Q C D  E v o l u t i o n  E q u a t i o n  for  P a r t o n s  

Though, as we noted above, the par ton distribution functions can not be cal- 
culated by pQCD, the theory provides a way to predict how these distributions 
should evolve with the scale Q2, once they are given at an initial scale. Before 
we proceed to describe these evolution equations, we would like to note  tha t  
the QCD factorization theorem was proven only in leading twist and thus the 
expression for the structure function includes also higher twist terms (note tha t  
we have somewhat simplified the notation): 

1 

where A is the QCD scale. 
F is a measurable quanti ty and therefore can not depend on #F:  

(4.9) 

2 dF(x, Q2) 
#F ~ - ~  = 0 (4.10) 

The splitting functions Pij (z, a s  (#2)) are defined to represent the process in 
which a quark with a momentum fraction x radiates a par ton  of a momentum 
fraction (1 - z)x and continues with a fraction momentum zx: 

Z X  

(4.11) 
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Then one can write the following equation for the parton distribution function f i :  

1 

d In #2 z 
3 x 

This set of integro-differential equations is named DGLAP [56, 57, 58] after 
Dokshitzer, Gribov, Lipatov, Altarelli and Parisi. 

The splitting functions Pij  give the probability of finding patton i in parton j.  
They can be expanded in orders of (v~s /2r) :  

ov 2 ~,~(~,°~) = :2 (°'~°~.~-~)(~) = ~(o)(~)+ (~) ~(?(~) +... (~.1~) 
\ 2~] s 

n----1 

A similar expansion can be written for the coefficient functions Ci: 

where the value of p depends on the initial process. 
The partonic picture of the pQCD evolution for F2 can be represented dia- 

gramatically by the following picture: 

x2, k ~ ~  
Xl , k 2 1 ~  ~ 

Q~ 
Each blob in the chain has a structure like this: 

P ( z ,  a s )  = ~_~p(o) + 

-t- • •. 

+ . . .  

(4.15) 

(4.16) 
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There is strong ordering in the transverse momenta kT of each leg. If there 
are m steps in the chain, each having a transverse momentum square of k~i, 
then: 

x3, k~- 3 

.qg . ,  
X2, k~, 2 

Xl ,  k~ l  

DGLAP 

Xl > X2 > X 3 . . .  > ~m ---- X 

<< <<...  << = Q2 

(4.17) 

If we take only the terms C (°) and p(O), we do leading order perturbation 
calculation. The terms C0)~and p(1) give next to leading order calculations. 
However by solving the DGLAP equations, we sum up the terms (as  In Ag~-) m to 
all orders. In this case one is performing a leading log approximation in In Q2, 
usually shortened as LLA(lnQ 2) or just LLA. One should note that the split- 
ting functions P(~) (x) ~ ( l /x)  In x n- l ,  which gets logarithmically enhanced at 
low x. Thus, if one takes only the first two terms, n = 1, 2, one is restricted to 
moderate x only. 

D G L A P  Equa t ions  in Leading Orde r  One can write the DGLAP equations 
in leading order in the following form: 

dqi(x, Q2) _ as(Q2) ~ dz 
d In Q2 2r J z 

x 

dg(x, Q2) 
1 

_ as (Q 2) / dz 

21r z d In Q2 

The parton which is probed at the scale of Q2 by the virtual vector meson, has a 
fractional momentum x which is the result of a chain of splitting which started 
from the parent parton. Since the longitudinal momentum of the daughter parton 
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is always smaller or equal to that of the parent one, the integration is restricted 
to x < z < 1. Also if one neglects the masses of the quarks, the change in the 
distribution function depends only on the ratios of longitudinal momenta x / z .  
The sum j is over the quark flavours, and one assumes that the splitting functions 
are flavour independent. Thus: 

P( ; )  = 6i j  P i i  = 5 i j  Pgg (4.20) 
Pgj = Pgq Pig = Pqg (4.21) 

Conservation of momentum for a parent quark and a gluon gives: 

1 

dz [Pqq(Z)  q- = 0 ( 4 . 2 2 )  Pgq(z)] z 

o 
1 

dzz[2nfPqg(Z) Pgq(Z)] = (4.23) + 0 

0 

where n I is the number of flavours, and 

Pqq(z )=Pgq(1  - z) 
1 - z  

(4.24) 
Z 

P q g ( z ) : P q 9 ( 1  - z) 
1 - z  

~ j ~  (4.25) 
Z 

Pgg(z )=Pgg(1  - z) 
1 - - Z  

(4.26) 

In leading order the quark-parton model (QPM) relations between struc- 
ture functions and patton distributions hold. So it is easy to derive the evolution 
equations for the structure functions. One usually defines the colour singlet com- 
bination, which evolves with gluons: 

x Z ( x )  = E n f  [xqi(x) + xqi(x)] (4.27) 
i----1 
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The colour non-singlet combination, which evolves with quarks, is: 

x V ( x )  = E nf  [xqi(x) - xqi(x)] 
i=1 

(4.28) 

Leading order splitting function: For completeness we give her the explicit form 
of the leading order splitting functions: 

4 1 + 35( 1 P(O)(x) = ~ [ ~  + ~ - x ) ]  (4.29) 

P(~)(x) = (1 - x) 2 + x 2 (4.30/ 

4 (1 - x) 2 + 1 (4.31) 
P(°)(x) = 3 x 

P(° ) (x )=6  ( l - - x ) +  + ~ x  + x ( 1 - x )  + g ( 1 - x )  (4.32) 

where we used the following definition: 

1 1 
f(z) =-- / dz f(z) - f(1) (4.33) 

dz (1 7 z ) +  (1 z) 
o o 

4.3 T h e  B e h a v i o u r  o f  F2 at L o w  x 

What  do the DGLAP equations tell us about the behaviour of the structure 
function at low x? We have already seen earlier that  the structure function F~ p 
is connected to the 7*P cross section via the relation: 

(4" (4.34) F~P(x, Q2) _ 4~a  Q2 + v2 

The variable x can be expressed as: 
Q2 

x ----- (4.35) 
Q2 + w 2 _ m~ 

and since we are discussing the region of low x, this means high W. 
We have seen in the last part of the chapter 2 on Regge theory tha t  the total  

photoproduction cross section behaves at  high energies like atot (Tp) ~" (W2) °'°8. 
Does this behaviour hold also for atot (7*p)? If it were so, this would mean tha t  
at low x we expect F2 ~ x -°'°s. However, a look at the experimental da ta  shown 
in Fig. 8 shows [59, 16] that  F2 ~- x -°'3+°'4. Can such a behaviour be expected 
from the evolution equations which we presented in the last section? 

Let us write again the DGLAP equations in a shorter notation: 

dqi  _ O~s [pqq • qi + Pqg @ g] (4.36) 
d In Q2 2~ 

dg _ as [pgq ®qi + Pgg @g] (4.37) 
d In Q2 2~" 
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x 1 - x  ] 
P~)(x)=6 ( 1 - - x ) +  + x + x ( 1 - x )  

P~)(x)= 4 ( 1 - x ) 2 + 1  
3 x 

(4.38) 

(4.39) 

we see that  gluons are produced most copiously at low x. Since the qi are small 
at low x, the gluon evolution equation can be approximated by: 

t 

dg(x, Q2) c~s(Q 2) / dz x 2 
~ _ -  --Pgg(z)g(z,Q ). (4.40) d In Q2 21r z 

x 

Using P(°)z ~_ 6/z one get the so-called double leading log approximation,  
where only terms proportional  to In ~ In Q2 are taken: 

In ~ In xg(x, O 2) ,~ exp 11 - ~nf In 

1/2 

(4.41) 

where Qo 2 is the starting scale for the Q2 evolution. Numerically this expression 
has the same value as ~ x -°'4. 

This result however has a few problems: (1) it violates uni tar i ty  and (2) since 

in general the functions P(~) ,-, ~ (ln n-1 x q- CO(ln n-2 x)) the series does not 
converge and thus higher orders are needed. 

4.4 The  B F K L  E v o l u t i o n  E q u a t i o n  

The DGLAP equations give us a way to see how a par ton distribution which 
is given at an initial scale Qo 2 evolves to higher Q2. Since Q2 increases one has 
to resume the leading a s  In Q2 terms. When the ep center of mass energy is 
large, like at HERA, there is a second variable which becomes large, namely 
1Ix ,,~ s/Q 2. In this case one has to resum the leading c~s ln(1/x)  contributions. 
The BFKL [60, 61, 62] equations do such a resummation.  As one evolves to 
smaller x, there is no more strong ordering in k~. The strong ordering is ra ther  
in x and therefore one considers here the unintegrated (over the gluon transverse 
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momentum) gluon density distribution. 

BFKL (only gluon-gluon ladder) 

C 

x3, 

C 

xl >> x2 >> x3 . . .  >> Xm = x 

no ordering in k~, i 

(assume no evolution in Q2) 

k~,l ~ Q2 

(4.42) 

At a given Q2, gluons have a distribution in x and kT, .fg(x, kT), which is 
related to xg(x, Q2) through: 

Q2 

o 

Summing up all ladder diagrams in ln(1/x) gives the BFKL equation: 

--X 
Ox 

(4.43) 

= ~ f dk~ f ~ ( x , k ~ ) -  f~(x,k~v ) fg(x,k~)_ ] = 

= K ® fg (4.44) 

where K is the BFKL kernel. Note that this equation relates only to gluon 
distributions, as also seen from the diagram. It does not discuss the Q2 evolution. 
It is an equation which describes what happens to the gluon distribution when 
one starts from a distribution at Xo (of the order of ~ 0.01) and evolves to 
smaller x values. 

The solution of the BFKL equation, after integrating over the gluon kT, has 
an x dependence like: 

xg(x, Q2) ,.~ x-~, (4.45) 

where, for fixed as ,  can be expressed as ~ = (3ols/r)41n2. Since x -~ ~ s ~, 
one obtains an energy dependence of the gluon density which is expected from 
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the Regge theory at high energies. Thus BFKL succeeded to 'reggeize' the gluon 
and provide a connection between QCD and Regge theory. The  exponent  ~ is 
usually said to be 0.5, though this requires a s  = 0.18, which happens only at 
high Q2. 

If we assume tha t  kT is large, one gets a Q2 dependence of the form: 

Q -~ 
xg(z,Q ) ~ - - z  , (4.46) 

which gives a stronger scaling violation than  the one from the DGLAP equations 
(~  In Q2). Note that  this solution is obtained in the leading log approximation 
(LLA) in In ( l /x ) .  

These equations also have some problems: (1) the LLA solution violates uni- 
rarity, (2) higher order corrections are not yet available, (3) the integration on kT 
starts from 0, thus one enters also the non-perturbat ive region, and (4) the equa- 
tion doesn' t  have implicitly energy-momentum conservation. 

S o m e  C o n s e q u e n c e s  f r o m  t h e  B F K L  E q u a t i o n  

BFKL Pomeron: We have seen in the Regge theory chapter 2 tha t  at high 
energies the total  cross section behaves like: 

6 r ~ 8 ~ P ( 0 ) - I  (4.47) 

Since the cross section at high energies (low x) is driven by the gluons, and since 
the x dependence of the gluons is ,~ x -~ ~- s ~, the Pomeron intercept comes out  
to be in this case: 

~ ( 0 )  = 1 + ~ ~ 1.5 (4.48) 

in contrast  to the result of a~ (0 )  -- 1.08 as obtained by the analysis of Don- 
nachie and Landshoff. Therefore one talks about  the BFKL Pomeron which has 
an intercept of 1.5 and a DL Pomeron of intercept 1.08. Other  names used in 
the l i terature are 'hard' ,  'per turbat ive ' ,  'Lipatov'  Pomeron (1.5) and the 'soft' 
Pomeron (1.08). We will discuss at a later stage the question of one or two 
Pomerons.  

Hot spots: As we said above, the BFKL equations t rea t  only the evolution in x. 
Since there is no evolution in Q2, this means that  the transverse area is fixed. Let 
us look at the schematic presentation of the proton with some partons inside, as 
shown in Fig. 26. When we evolve to lower x, the number of partons increases 
in a fixed area, leading to an increase in the local density. This phenomena is 
named 'hot spots'  [63]. It  still has to be seen at which value of x this should 
happen. 
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Fig. 26. Diagram showing the increase in local density in an evolution in x. 

Jet in the proton region: In the DGLAP picture, with the strong kT ordering, 
one expects that the large kT jet would be near the 7", while near the proton 
direction there will be just the low kT remnant jet. Since there is no strong kT 
ordering in the BFKL dynamics, one can have a situation where the large kT jet 
would be near the proton, in the proton direction, which will be balanced by a 
jet in the 7* direction. 

S i g n s  for t h e  B F K L  D y n a m i c s  The behaviour of the structure function F2 is 
not sensitive enough to tell the difference between the DGLAP dynamics and the 
BFKL one, at least not in the HERA kinematic region. Also both are compatible 
with a gluon density behaviour of xg(x ,Q 2) ..~ x -x  at low x. How then do we 
tell a BFKL type dynamics form a DGLAP one? 

Let us look at the schematic presentation in Fig. 27. We start from a point 
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Fig. 27. Diagram showing the evolution from point (xo, Q~) to (x, Q2). 
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with the coordinates (x0, Q02) and evolve to a point (x, Q2). We can get from 
the one to the other in several ways. While the DGLAP equations describe the 
motion in the whole plain, if we give the initial conditions, the BFKL equation 
describes only the path along the 1Ix axis, at a constant Q2. 

Clearly, the best way to see BFKL dynamics is to restrict the Q2 evolution. 
Mueller and Navallet [64] pointed out that at low x one should look for a large 
transverse momentum jet near the proton direction. The large transverse mo- 
mentum, compared to Q2, guarantees a large kT at the start of the evolution, 
thus forcing the rest to be an evolution only in x. Referring to Fig. 27 this would 
mean that we got in one step from (x0, Q02) to (xo, Q2). The rest would be the 
evolution from Xo to x. Studying the energy behaviour of the cross section for 
such events and finding it rises steeply, like say s °'5, should be a sign for the 
BFKL dynamics. 

4.5 The  C C F M  E q u a t i o n  

For sake of completeness, we should mention the existence of a unified equation 
developed by Catani, Ciafaloni, Fiorani and Marchesini (CCFM) [65, 66, 67]. 
The CCFM equation, give the BFKL solution at low x and the DGLAP one at 
large x. It is based on the coherent radiation of gluons which leads to a strong 
angular ordering of gluon emissions. 

4.6 Sa tu ra t i on  

When the density of the partons becomes very large, the partons start overlap- 
ping and coherent effects are important. The partons interact with each other. 
When do these effects become important? In order to answer this, let us first 
explain what one means by the density of partons. 

The quantity xg(x, Q2) is the gluon density per unit of rapidity. In order to 
see that lets start from the definition of rapidity. The rapidity y is : 

1 1 E + p~ 1 (E + p~)2 1 (E -4- pz) 2 (E + Pz) 2pz 
- -  - ~ l n  = - I n  - In  -~ In  

(4.49) 
The rapidity Ay of a patton with momentum Pzi = xp relative to the proton 

is then 

Ay = Yproton -- Yparton : In mT2P _ In mT2Xp ,.~ In ~2P = In --xl (4.50) 

and thus dy = dx/x. The number of gluons dNg is given by 

dN s = g(x, Q2)dx = xg(x, Q2) dx = xg(x, Q2)dy (4.51) 
X 

Therefore: 
dNg (4.52) 

xg(x, Q2) _ dy 
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meaning the number of gluons per unit of rapidity. 
Let us estimate now the sizes of the gluon and of the proton. The proton size 

is usually taken to be rp ,~ 1 fm ~ 5 GeV -1. The gluon radius is rg ,,, 2/Q, when 
the proton is probed at a scale of Q2. The screening effects become important 
when the gluon density is of the order of the ratio of the square radiuses of the 
proton and the gluon: 

2 25 GeV 
xg( ,Q2) ~ rp _ ~ 6Q 2 [CeV (4.53) 

4 

In the section discussing the experimentally obtained gluon distributions we 
will show that for instance at Q2 : 20 GeV 2, the gluon density reaches about 
30 gluons per unit of rapidity at x = 10 -4. Since at this Q2 according to (4.53) 
screening effects [68, 69] would be important at a density of about 120 gluons 
per unit of rapidity, one probably needs to go to much lower x values to observe 
screening. 

4 .7  P a r t o n  P a r a m e t e r i z a t i o n s  

In order to describe the hadronic processes at high energies it is necessary to 
know the individual parton distributions as function of x and Q2. The basic 
formula for a generic high energy inclusive hadronic process A + B --+ C + X 
has the form: 

a(AB ~ CX) = f~ ® #ab--~cX ® fb (4.54) 

where # is the calculable hard cross section for the partonic subprocess, and 
f.~(fb) is the distribution function of parton a(b) in hadron A(B). In this nota- 
tion, the gluon density distribution in the proton xg(x, Q2), would be fpa. 

Since theory does not give absolute predictions for patton distributions, they 
have to be obtained from some experimental input and then the DGLAP equa- 
tions allow to determine those patton distributions at any Q2, even not acces- 
sible experimentally. However parton distributions are not directly measured in 
the experiment. It is the structure functions or hadronic cross sections that  are 
measured. 

One way of extracting the parton distributions from the measured data is 
based on the approach to introduce the parton distribution at the level of the 
global fit. It means that the structure functions are parameterized at some refer- 
ence value Q2 and then evolved numerically in Q2 through the DGLAP equations 
in the kinematic regions where they are measured. A global fit is then performed 
to determine the best values for the starting parameters. A by-product of these 
fits performed on the singlet structure function F2 is a parameterization of the 
gluon distribution at the reference scale Q2. Because deep inelastic scattering 
does not constrain significantly the gluon distribution, a large variety of gluon 
behaviour is proposed in the literature. We will discuss the gluon density in a 
separate section. 
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Fig. 29. atot(~/*p) vs W 2 compared to the GRV parameterization. 

It is conventional to use the following parameterizat ion of f ~ ( x ,  Q o ) . a  2 . 

a 2 fp (x, Qo) = A~ xA~ (1 - x) A~ P~'(x; A'~, . . .) (4.55) 

where Pa(x )  is a smooth function of x. Provided the functions are sufficiently 
flexible to accommodate  the true distributions, the part icular  form of the pa- 
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Fig. 30. Low Q2 measurements of the F2 structure function at HERA, compared to 
the GRV and DL parameterizations. 

rameterization is, in principle, immaterial. The most frequent parameterizations 
used lately are those of Martin, Roberts and Stirling (MRS) [70, 71] and the 
CTEQ [72] collaboration, both of which use as a starting scale Q2 _ 4 GeV 2. 
One example of a parameterization is the following: 

xqNs(X, Q 2) = ANSi---~Ns(1 -- x)  nNs (4.56) 

xqsi(x, Q~) = As,x ~s' (1 - x)'~'(1 + ~s . , /7  + v s ~ )  (4.57) 
xg(x, Q2) = Agx6g (1 - x) 'g (4.58) 

where NS and SI stand for the non-singlet and the singlet functions. 
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Another approaches which is based on a dynamical model is that taken by 
Giick, Reya, and Vogt (GRV) [73]. Their assumption is that at a very low scale 
(chosen to be Q02 _~ 0.34 GeV2), there are only valence patrons which evolve to 
higher Q2 to produce the sea of paxtons. 

In Fig. 28 the F2 structure function data measured at HERA in the low Q2 
region of 1.5 < Q2 < 15 GeV 2 are compared to some of the parton parame- 
terization. Also included for Q2 < 4 GeV 2 are-predictions from a Regge model 
inspired parameterization by Donnachie and Landshoff (DL) [74]. It is evident 
that the QCD motivated parameterizations give a good description of the data 
down to quite low Q2 values, while the DL one underestimates the data. 

The GRV parameterization is compared in Fig. 29 to the total 7*P cross 
section data. As one sees, it can describe quite well the data at high energies 
down to low values of Q2. 

In Fig. 30 the recent measurements of the structure function down to Q2 = 
0.16GeV 2 are compared to the GRV (QCD) and the DL(Regge) paxameteriza- 
tions. One sees a good agreement between the DL predictions and the data up 
to Q2 : 0.57 GeV ~. The GRV predictions are completely off at the starting scale 
of their evolution, Q2 = 0.34GeV 2, but gives a good description of the data 
starting at Q2 __ 1.5 GeV 2. 

4 .8  G l u o n  D i s t r i b u t i o n  in t h e  P r o t o n  at  L o w  x 

The gluon density distribution is of special interest at low x since it is believed 
to be the source of the rise seen in the structure function as z decreases. How 
can one extract the gluon distribution in the proton? In principle there are two 
methods to do so. One is through the global QCD fits, as described above, using 
the inclusive DIS cross section measurements. The other is a 'direct' method, in 
which one uses an exclusive process, the cross section of which is proportional 
to the gluon density. We will describe below both methods and show results 
obtained so far at HERA. 

The  Gluon  Dens i ty  f rom Global  QCD Fi ts  One can use a full global fit, 
using forms like in (4.58) to parameterize all the parton distributions, including 
the gluon one, and thus extract the gluon density distribution. At low x how- 
ever, one can use the fact that the quark densities are much smaller than the 
gluon ones, to obtain the gluon density through approximate methods. One such 
method was provided both in leading order (LO) and in next to leading order 
(NLO) by Prytz [75, 76]: 

x 2 
LO: xg(x,Q 2) ~- dF2(~,Q ) 1 

dlnQ2 (40/27)~s/4r (4.59) 
x 2 

NLO: xg(x, Q2) ~_ dF2(~,Q ) 1 
dlnQ2 (40/27+ 7.96~s/47r)~s/4~r (4.60) 

(20/9)(as/41r)N( ~, Q2) 

(40/27 + 7.96c~s/41r) 
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where N ~(~, Q2) is a correction function which depends on the gluon density at 
large x (x > 10-2), which is constrained by existing data. The resulting gluon 
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Fig. 31. The gluon density distribution, xg(x), as /`unction of x at a fixed Q2 
0/'20 GeV 2, obtained from LO and NLO approximate methods (Prytz and EKL). The 
result of a global fit is shown/'or comparison. 

distribution extracted this way can be seen [77] in Fig. 31. In the same figure, 
results from another method (Ellis, Kunszt, Levin (EKL) [78]) and from a global 
QCD fit are shown for comparison. All methods give consistent results with each 
other. 

A more recent extraction of both HERA experiments [16, 14], using a global 
QCD fit, is displayed in Fig. 32. The figure also shows how the higher statistics 
data yielded a narrower error band on the result. 

Ex t r ac t i ng  the  Gluon  Dens i ty  f rom Exclusive Processes  This method 
is based on the fact that the cross section of some processes are proportional 
directly to the gluon density or to the square of the gluon density. 

Two-jets production in DIS: In leading order, two jet events in DIS are produced 
either by photon gluon fusion or by QCD-Compton scattering, the diagrams of 
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x 
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which are: 

e e e e 

P P 

(4.61) 

At small x the cross section is expected to be dominated by the pho ton-g luon  
fusion process. Wi th  this assumption one can ext rac t  [79] the  gluon density, as 
shown in Fig. 33. This  leading order extract ion of the gluon density distr ibution 
is compared in the same figure to the results from the global QCD fits and the 
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from a leading o r d e r  analysis o f  2- jet  events. The results a r e  compared with those from 
a global QCD fit and from an approximate method. 

approximate methods, described above. Note the good agreement between the 
different gluon determinations, which provides a check on the universality of the 
gluon density. 

Inelastic J /~ production: Inelastic J / ~  production is the process 7P --~ J / ~ X  
which is described diagramatically as follows: 

e e 

p (4.62) 

In this case a gluon from the proton interacts with the exchanged photon to 
produce a closed charm pair which radiate off a gluon and produce the colour 
singlet J/g" state. The cross section for this process is thus sensitive to the 
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gluon density distribution in the proton. The present measurements [80, 81] are 
presented in Fig. 34. Though the results are well described by NLO pQCD cal- 
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Fig. 34. Inelastic J/ka cross section data as function of W compared with different 
choices of gluon distribution in the proton. 

culations, they are not yet precise enough to be able to distinguish between 
different gluon density shapes. 

Open charm production: The open charm process, described in the diagram 
below, differs from that of the inelastic J / ~  in that there is no combinations of 
the produced c5 pair into a colour singlet object. 

e e 

p (4.63) 

Instead, each charm quark hadronizes to produced a charm meson in the final 
state. By measuring for instance the inclusive D* production one can obtain the 
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cross sect ion for the  process  7P -~ c~X, which is sensi t ive to  the  g luon densi ty .  
F igure  35 shows the  D O signal  seen [82, 83, 84, 85] d i rec t ly  f rom the  (K~r) m a s s  
s p e c t r u m  and the  s ignal  observed  in the  m a s s  difference be tween  the  D* and  
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the D. The cross section for inclusive open charm product ion is shown in Fig. 36 
with lines showing predictions of different gluon density distributions. Here too 
da ta  of higher accuracy, to come soon, are needed. 

1" 
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- 2  i! I~ 
10 ' 
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W (GeV) 

Fig. 36. The cross section measurements for the process ~p --~ e~X as function of the 
7P center of mass energy W. The solid and dashed lines represent predictions on NLO 
calculations using different gluon density shapes. 

Elastic J / ~  production: We will discuss this process in more detail in the last 
two chapters. The  process of elastic vector meson product ion in DIS is of special 
interest since in can be fully calculated in QCD. As for the extract ion of the 
gluon density, the diagram describing the process 7P --~ J / ~ P  is a two gluon 
exchange diagram and the cross section is proport ional  to the square of the 
gluon density distribution. The cross section for the photoproduct ion reaction is 
shown [86, 80] in Fig. 37. The  curves [87] are calculations using different gluon 
density distributions and show the sensitivity of the cross section to the different 
shapes. 

4 .9  S u m m a r y  

In this chapter we have discussed the following issues: 

- We have discussed the factorization theorem which holds for an inclusive 
process and which allows to factorize the structure function calculation into 
a part  which is fully calculable in pQCD, the coefficient functions, and a 
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part  which involves long distance effects and has to be obtained from the 
experiment, the parton distribution functions. 

- Once we obtain the pat ton distribution functions at a given Q2 scale, there  
are evolution equations which can predict the par ton distribution functions 
at a higher scale. When the evolution is done in Q2 one gets the DGLAP 
equations. These equations can describe the behaviour of the s t ructure  func- 
tion F2 at low x down to Q2 values of ~ 1.5 GeV 2. 

- The BFKL equation studies the evolution in x only. It predicts for the gluon 
density a behaviour of x -~,  providing by this 'reggeization' a link between 
QCD and Regge theory. For a fixed a s  value, A is of the order of 0.5. This 
introduces the 'BFKL Pomeron'  as a t ra jec tory  with an intercept of 1.5. 

- Presently it is not easy to find experimental  signals for the BFKL mechanism. 
The behaviour of the structure function in the low x range provided by 
HERA is consistent with both the DGLAP and the BFKL approach. Signs 
of the BFKL mechanism can be obtained by studying the energy dependence 
of jets produced near the proton direction• 

- We reviewed the extraction of pa t ton  distributions and discussed some of 
the par ton parameterizations like the MRS, CTEQ and GRV. The  GRV one 
is more than  just a parameterizat ion since it is based on a dynamical  picture 
in which there are only valence partons at a very low scale and the sea is 
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then built by the evolution. 
- The recent HERA data at low Q2 shows that the Regge picture works well 

up to about Q2 ~ 1 GeV 2, while the QCD para.meterizations work well down 
to about the same scale. 

- Finally we discussed methods for the extraction of the gluon density distri- 
bution from global QCD fits and from exclusive processes. The distributions 
from all methods give consistent results with each other, providing a check 
on the universality of the gluon density. 

5 P a r t o n  D i s t r i b u t i o n  i n  t h e  P h o t o n  

This chapter describes the concept of the photon structure function. We will 
define the photon structure function after developing the formalism for that, and 
write the evolution equations for the photon, pointing out the differences to those 
of the proton. We will discuss the theoretical importance of the photon structure 
function and the experimental methods of extracting it from the data. Finally 
we will introduce some parameterizations of the photon structure function, both 
of real and of virtual photons. 

5.1 I n t r o d u c t i o n  

In the classification of elementary particles, the photon plays the role of a gauge 
and point-like particle, mediating electromagnetic interactions through its cou- 
pling to the charge of matter. Yet, it is well known from soft, low energy 7P 
interactions that its behaviour can be similar to that of strongly interacting 
hadrons. The properties of those interactions are well described by the vector 
dominance model (VDM) [32], in which the photon turns first into a hadronic 
system with quantum numbers of a vector meson and then interacts with the 
target proton. 

A nice justification for this model can be seen from the argument of Ioffe [88, 
89]. We know from QED that a photon can fluctuate into a pair of virtual 
charged lepton like e+e - ,  which annihilate back to a photon. It can however 
also fluctuate in a quark-antiquark pair q~. If the time of the fluctuation t f  

is large compared to the time of the interaction tint the interaction will occur 
between the qq pair and the proton, resulting in a hadronic interaction. We can 
estimate the fluctuation time by using the uncertainty principle. Assume a real 
photon (Q2 _ 0) with energy k interacts with a proton which is at rest. The 
energy difference AE at the vertex where the photon fluctuates into a qq pair 
having the same momentum as that of the photon and a mass of m q q  is: 

2 ! AE = (k 2 +mqq).2 - k (5.1) 

The Vector Dominance Model assumes that the fluctuation of the photon is into 
vector mesons, mqq  ~_ m y ,  where m v  is the vector mesom mass. For high energy 
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photons, k >> m y  and one can approximate tf by: 

1 1 1 2k 
m 2 t f  ,', ~ ~ k 1 + ~ - 1 rn~, (5.2) 

The interaction time is of the order of the proton radius rp, namely: 

t~nt ~ rp (5.3) 

For example, taking a k = 10GeV photon, and m y  = rap, one gets t f  ~ 7fm, 
while tint "~ 0.8 fm and thus the condition ty >> tint holds. 

When instead of a real photon one has a virtual photon (Q2 ~ 0), the fluc- 
tuation time is given by 

2k 
t l  = Q2 + rn~, (5.4) 

and thus as Q2 increases, the fluctuation time becomes smaller and the photon 
behaves like a point-like object. However, as we shall see later, there are con- 
ditions for which even at high Q2 the fluctuation t ime will be large (see next 
chapter). 

We thus have [90] a picture of a two-component photon: 

17 >-- ]9' >bare +coeff. × 17 >h (5.5) 

in which the hadronic part is represented in VDM by 

Iv >h= alp > +bl  > +ct  > (5.6) 

This picture was verified in 7P reactions by observing tha t  for instance the 
reaction 7P --+ r+~r-P is completely dominated by 7P-'+ pop: 

(5.7) 

and also in e+e - experiments, by studying the reactions: e+e - -+ ~r+r - , ~r+Tr-~ °, 
K K ,  which showed the p0, w, ~: 

V0/  

(5.s) 
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These reactions also provided a determinat ion of the direct photon-vec tor  meson 
coupling strength, (4 r /7~) :  

(5.9) 

4r ] 

and allowed to test  the VDM prediction of their ratios: 

: \ 47 r ]  : ~ ]  = 9:  1 : 2  (5.10) 41r] 

The VDM predicted [90] many more relations, most of which were borne out  
by the data. However VDM is a model. It  did not evolve from 'looking' at the 
photon with a probe. It  related photoproduct ion reactions to hadron reactions by 
modelling the photon as a superposition of vector mesons, with direct pho ton -  
vector meson couplings which could be determined by experiment.  This model 
worked very well at low PT reactions. 

How can one 'look' at the photon in a way similar to what  has been done 
to the proton? The most natural  way is to perform a deep inelastic scattering 
experiment on the photon [91] by studying e7 reactions. First  one produces a 
high energy photon beam by using a backscattered laser beam in a linear collider. 
A laser beam of about 1 eV colliding with a 0.25 TeV electron beam can produce 
a photon beam of about  0.2 TeV of energy: 

e -  'T (5.11) 

The resolution of such a beam can be of the order of A E . ~ / E ~ ,  ,,~ 10 %. The  
high energy photon beam can then collide with another  electron beam of energy 
0.25 TeV giving a luminosity of the order of £ ,~ 1033 cm -2 sec- l :  

-y 

e -  

(5.12) 

It is also possible to collide two real photon beams this way when such a linear 
collider becomes available. 
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For the time being one has to use e+e - interactions leading to two-photon 
exchange. 

e-- 

7*.(P 2) 
e ~ 

e-- 

X 

e ÷ 

(5.13) 

When one of the photons with very small virtuality (p2 ~ 0) interacts with 
the other one with high virtuality (Q2) ('single-tag' configuration), the inter- 
action can be thought of as a DIS of one photon on the other, in which case 
the situation is similar to the probing of a proton by a highly virtual photon. It 
is therefore natural to introduce the notion of the photon structure function in 
analogy to the well-known proton one. We will introduce the formalism in the 
next section. 

5.2 Forma l i sm 

The DIS for e 7 interaction [92] is depicted in the following diagram: 

k' 
L 

e7 ~ eX da ~ ~ [  ~ 1 7  (5.14) 

I 
To stress the analogy with the proton case, we also show the DIS of the ep ease: 

ep ---> e X  da ~ ~ (5.15) 
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We will start with the e+e - reaction, with the notations as defined in the 
diagram below, and develop the cross section formalism for the reaction e+e - -+ 
e + e - X ,  from which we will get that of the DIS reaction e'y --4 e X .  

e 

pl (El, P l ) ~  
-/:2_%___ 

v 

Pl (E, Pl) 

ee  ~ e e X  

e 4- 

P2 (E, - p l )  
r 

q~ = _Q~ 

q2 = _p2 

p'~ ( S~  , 

x (5 .16)  

The matrix element for the reaction e+ e  - --4 e + e - X  has 256 components. 
These can be reduced to 81 using gauge invariance and by further applying the 
optical theorem and P, T invariance one is left with the following 6 independent 
components: a~, art, au, au, T~, T~l. Here t stand for transversely and l for longi- 
tudinally polarized photon states, while T denote their interference. Integrating 
over the scattering plane of the leptons and using the fact that  the target pho- 
ton is almost real and thus only transversally polarized, one has only the two 
independent components act and au. 

The reaction ee  --4 e e X  can be viewed as a two-step process. In the first step 
the target photons are radiated by one of the electrons and are then probed in a 
DIS by highly virtual photons 7" emitted by the second electron. In order to take 
into account the momentum spread of the target photons and their slight off- 
shellness, one uses the equivalent photon approximation (EPA). In this approach, 
described by the Weizs~cker-Williams formula [93, 94], the photons are assumed 
to be emitted real and their momentum spread is modified appropriately. 

One can use the equivalent photon approximation (EPA) to write: 

where 

with 

dffee-+eeX m dae3 ,~exfT/e  

o~Ei (y2 _ 2y - 2) dEid~ i (art + calf) 
dc%3,__+e x = 27r2Q2y 

(5.17) 

(5.18) 

_ 2(1 - y)  (5 .19)  
1 + (1 - y)~ 
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where we have used the Hand definition of the flux. The factor .f,~/e is the flux 
of the target photons, which is given by the Weizs~cker-Williams formula: 

f~/~ = ~---~rz [ ( z 2 -  2z + 2)ln E(1-mez)0~maxz - ( 1  + z)] (5.20) 

where z E. f /E,  m~ is the electron mass and ' : Olmaz is the limiting scattering 
angle of the tagged electron on the probing photon side. 

5.3 Def ini t ion of  P h o t o n  S t ruc tu r e  Func t ions  

We can now introduce [95] the notation: 

Q2 1 
F~ - 47r2 a 2xa~ 

F~ - 41r2 a (au + au) 

(5.21) 

(5.22) 

where x is the Bjorken variable as defined earlier, and, because of the massless 
target, has the relation: 

Q2 
x - Q2 + W 2 (5.23) 

and W is the 7"~/center of mass energy. With these definitions we can write the 
cross section for the e7 DIS process as: 

da(e7 -+ eX) 4rc~2s., 
dxdy - ~ ((1 - y)F~ -{- xy2F~l] (5.24) 

which is to be compared to the proton case, where 

da(ep --+ eX) 4ra2s 
dxdy - Q4 [(1 - y)F~ + xy2F~] (5.25) 

As one can see, the similarity is complete. Therefore, F7 can be treated as the 
structure functions of the target photon. The experimental conditions in the 
single-tag e+e - experiments are such that the accepted values of y are small. 
Typically the average value of the product xy 2 are of the order < xy 2 >~_ 
0.01...  0.02 and therefore the F~ term is usually neglected in the expression 
(5.24). 

Def in i t ion  o f  P a t t o n  Dis t r ibu t ions  in t he  P h o t o n  We will again use the 
analogy to the proton case to define the patton distribution in the photon [96]. 
Let us look again at the proton case. The deep inelastic interaction of a probe 
with the proton is described by an incoherent sum of elastic scattering of the 
probe on free spin 1/2 quarks. This approach leads to the identification of the 
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F~ structure function as a sum of the contribution of all quarks and antiquarks 
that build up the proton: 

21 
F~(x) -= ~ xe~qi(x) (5.26) 

i----1 

where qi(x) gives, by definition, the probability of finding a particular type of 
quarks (antiquarks) in the proton, and xe~ is the elementary 'cross section' for 
the elastic scattering. 

In contrast to the proton, for a photon target one can predict the structure 
function of the photon directly from the quark patton model (QPM). One can 
perform a full calculation of the cross section ~ '7  -+ X to the lowest order in a 
for the process 

7" + 7 -+ q ÷ q (5.27) 

which is electromagnetic with known couplings. Note however that such an ap- 
proach disregards possible contributions from the hadronic component of the 
photon, a point to be discussed later. 

In QPM one can calculate F2 ~ through the 'box' diagram 

q Y 
to get the expression [92] (for massive quarks): 

(5.2s) 

2I 
F~ (x, Q2) : ~ xe i2qi "Y (x, Q2) (5.30) 

1 : 1  

with: 

N~e2 ( ~)2]ln 
q;, (~, Q2)= 2--;- ~, [~2 + (~_ 

Q2 (1 - x) } ~,~,x + 8~ (1 - ~ )  - 1 (5 .31 )  

F: (x, Q2) No " s ( [  02(~-~) } = ~ ~ ,  ~2 + (~_ ~)2] In 
7'r i = 1  m~i x + 8x  (1 -- x )  -- 1 

(5.29) 
where Nc is the number of quark colours. 

By analogy to the proton case, one can think of F2 ~ as the sum of momentum- 
weighted densities of quarks 'inside' the photon: 
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In spite of the complete analogy between the photon and the proton struc- 
ture functions, there are important differences in their behaviour. In the QPM 
the proton structure function F~ is expected to fulfil Bjorken scaling, while F~2 
manifests strong scaling violation even without the presence of ghon  radiation. 
Thus, contrary to the character of scaling violation in the proton case, which 
yields a negative contribution at large x and a positive one at low x, the scaling 
violation for the photon is positive in the whole x region (already at the Born 
level). This can be seen in Fig. 38 where the photon structure function data are 
presented [14] as function of Q2 for different x regions. The data show positive 
logarithmic scaling violation in all regions of x. 
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Fig. 38. The photon structure function as function ofQ 2 for d/fferent x intervals. 

Another difference between the proton and photon case is the x dependence. 
Simple counting rules predict that F~ should drop at large x, while F~ r is large 
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in the high x region (see below). 

5.4 Evolut ion  Equations for the  P h o t o n  

The DGLAP evolution equations for the photon [97, 98, 99] can be developed 
in a similar way to tha t  of the proton. However, there is one basic difference: in 
the photon case there is an additional contribution coming from the splitting of 
the photon into a qq pair, as can be seen in Fig. 39. 

q 

Pqq, Pgq Pqg 

q 

Pg9 Pq~ 
Fig. 39. The splitting functions utilized in the DGLAP equations for the photon. 

The splitting function of the photon is denoted by 

h T M  = Nceq~-~2 ~ [Lx 2 + (1 - x) 2] (5.32) 

Defining the variable t as follows: 
Q2 

t - In ~-~ (5.33) 

we can write the DGLAP evolution equations for the photon: 

dq~(x,t) _- hbox + 
dt 

2r  -~7 

dg~(x, t) _ 
dt 

(5.35) 
ql 

In the case of the QCD evolution equation for the photon structure function, 
the hbox term introduces an inhomogeneity into all parton densities in the pho- 
ton. This is different from the proton case, where all equations are homogeneous. 
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The solution to the set of equations (5.34) and 5.35 is given by a superposition 
of the general solution to the corresponding set of homogeneous equations and 
a particular solution of the inhomogeneous one. 

The inhomogeneous solution is determined by h b°x and thus depends only 
on the known point-like (pl) coupling of the photon to the quarks and quarks to 
gluons. This is why it is identified with the point-like contribution to the photon 
structure function. Since the homogeneous solution fulfils the hadron-like (had) 
evolution of the DGLAP equations, it is assigned to the hadron-like contribution 
to the photon structure function. One writes therefore: 

F~ ---- F2 ~'pl + F2 ~'had (5.36) 

T h e  Resolved  and  Direct  P h o t o n  In te rac t ions  This is perhaps the place 
to caution [100] the reader not to confusebetween the point-like photon and the 
direct photon reactions. Whenever the interaction of a photon can be described 
as a two-step process in which the photon first resolves into partons and then 
one of the parton participates in the hard interaction, such a photon is called 
a resolved photon. The resolved photon includes both the point-like and the 
hadron-like part. In the other cases, when the photon interacts directly, all 
its energy participates in the hard interaction and we say that this is a direct 
photon interaction. Examples of diagrams describing the direct and resolved 
photon interactions are shown in Fig. 40. 

e e 

p p 

Fig. 40. Diagrams representing direct and resolved photon interactions. 

This picture of resolved and direct photon was tested experimentally [101, 
102] at HERA. One can define the quantity x~ as the fraction of the photon 
momentum participating in the hard interaction. One expects then that for the 
direct photon processes x~ -~ 1 while for the resolved ones x~ < 1. A good way 
of estimating x 7 is to study two jet events. In this case one can calculate robs w,.? , 

the experimentally observed quantity which is close to x~: 

xobs E~I e- '~ '  + E~2 e-'J2 (5.37) 
= 2E~ 
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where ET is the transverse energy of the jet, y its pseudorapidity and E. r is the 
energy of the photon. The variable x~ bs is plotted in Fig. 41. The data [103] show 
an enhancement at high x and a distribution reaching down to low x values, as 
one expects from a sample of events produced by direct and resolved photon 
interactions. The data are compared to the distributions obtained from the sum 
of Monte Carlo generated events simulating direct and resolved photon processes. 
The agreement is quite good in most of the regions, except for the very low x 
region, which needs to be further studied. 
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Fig. 41. The x~ distribution as obtained from two je t  events, compared to direct and 
resolved photon interactions as simulated by Monte Carlo generators, 

5.5 The Theoretical Importance of  F~ 

As is known from the proton case, the hadron-like contribution varies very slowly 
with Q2. Thus in the high Q2 limit: 

Q2 
F~ --+ F~ 'pl = a(x) In ~-~ (5.38) 

In this equation a(x) is calculable in pQCD and therefore one can predict [104] 
both the shape and the magnitude of F~, resulting in the ability to determine the 
QCD scale A. Unfortunately, owing to many theoretical difficulties encountered 
in the calculation of F~, one of which is discussed below, the actual attempts to 
measure A through the study of F2 r have attained only a very limited success. 
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H i g h e r  O r d e r  C o r r e c t i o n s  We know from the proton case tha t  in order to 
get reliable results, one needs to do at least a next to leading order calculation. 
What  happens when one a t tempts  to do it for the photon case? Can one continue 
this two component picture of a point-l ike and a hadron-l ike par t  of the photon 
structure function? 

It would be too technical to develop here the next  to leading log approxima- 
tion. This is usually done by introducing the moments of the s tructure functions 
appearing in the evolution equation and by introducing the anomalous dimen- 
sions. We will just bring here the essence of such a calculation. The result is 
tha t  when one continues to separate the structure function in a point- l ike and 
hadron-like part  one gets: 

F~ 'pl < 0 for x <_ 0.1 (5.39) 

The situation gets worse with each order of calculation [105]. 
Since a structure function can not be negative, this means tha t  the separation 

into a point-l ike and a hadron-like par t  gives unphysical results for the point- l ike 
part  and thus the hadron-like par t  is needed in order to cancel the singularity. 
Since there is no way to calculate the hadron-like part  in pQCD and it can not  
be neglected even at high Q2, the absolute predictive power is lost. 

5.6 T h e  E x p e r i m e n t a l  E x t r a c t i o n  o f  E~ 

In principle, in order to measure F~ one needs to measure the cross section as a 
function of Q2 and x. Q2 can be determined by measuring the tagged electron. 
This can be with an accuracy of AQ2/Q 2 ~ 7 - 10 %, depending on the energy 
and angular resolution of the detector. 

I n  order to obtain x, one needs a good measurement of the total  hadronic 
energy W, which together with Q2 yield x according to (5.23). However, owing 
to finite resolution and limited acceptance of the detector,  one measures Wvis, 
the visible hadronic energy, which is usual smaller than W, as can be seen in 
Fig. 42. 

One needs thus to unfold the true result from the visible measurement.  This 
procedure needs a Monte Carlo program having a good simulation of the detec- 
tor and a good description of the structure of the event. One can see [106] for 
instance in Fig. 42(b) the improvement of the correlation between Wvis and the 
true W when using a bet ter  generator. However the simulation depends also on 
the fragmentation model used to generate the final state particles, which usually 
has problems with the description of the energy flow in the forward direction. 
Thus even the generator which gives a bet ter  correlation as far as the true W is 
concerned, fails to  describe the energy flow in the forward direction, as seen in 
Fig. 43. Clearly more work is needed in this direction. 

In spite of the problems described above, the photon s tructure function has 
been measured in a wide range of Q2 values. However, at present, the statistics is 
limited and also the systematic errors are quite large. This can be see in Fig. 44 
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where a compilat ion [14] of all existing measurements  of F~  is presented as a 
function of x, for different Q2 values. 
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ton parameterizations. 
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The curves are the predictions of some of the parameterizations [107, 108, 
109] of the patton distributions in the photon, to be discussed below. Note that 
there are very few measurements in the low x region, due to the experimental 
difficulties to isolate the photon-photon reactions from the e+e - annihilation 
final state at high W. 

5.7 P a t t o n  D i s t r i b u t i o n  in the  P h o t o n  

The parameterizations of the patton distributions in the photon are of two types. 
The one [110] uses the separation of the photon structure function into the point-  
like and hadron-like parts to separate also the parton distribution functions the 
same way. They use for the point-like part either the ones calculated from QPM 
or from pQCD. The parameterizations of the hadron-like contribution are based 
mostly on the VDM approach, in which F~'had(x, Q2) is related to the vector 
meson structure functions F2 V. Through isospin invariance the different F ~  are 
expressed in terms of the only experimental available mesonic structure function, 
that of the r - ,  F2 ~- , which is measured in Drell-Yan reactions. 

In the second approach, no distinction is made between the point-like and 
hadron-like contributions to the structure function, and a parameterization, 
fixed at a given Q~, is evolved to a different Q2 through the DGLAP equations. 
The first to undertake this approach were Drees and Grassie (DG) [111]. They 
used the LLA modified DGLAP equations to evolve an input parameterization of 
patton distributions at Q02 -- 1 GeV 2 so that it fits the PLUTO data at 5.9 GeV 2. 
This approach was extended later, using data in the range 1.3 < Q2 < 100 GeV 2 
by Abramowicz, Charchula and Levy (LAC) [112], where the gluon parameters 
were also left free in the global fit. These LLA parameterizations have been ex- 
tended to next to leading order, some of which are shown in Fig. 44. The different 
parameterizations obviously agree with each other where data exist, and differ 
in the low x region, where data are eagerly awaited. 

One source of measurements of the photon parton distributions at low x is 
HERA. We have already seen in Fig. 41 the x~ distribution obtained from two jet 
events. One can use the distributions obtained from the Monte Carlo generators 
to subtract the direct photon reactions from the x~ distribution, being left with 
the resolved photon processes. Since the quark distribution in the photon is quite 
well constrained by the photon structure function measurements, one can use a 
parameterization prediction like that of GRV to subtract the quark distributions 
from the resolved x~ distribution. The remaining events are attributed to come 
from the gluons and thus obtain the gluon density distribution in the photon. 
The result [113] of such a procedure is shown in Fig. 45. The gluon density 
distribution obtained in this way does not seem to show a strong rise as x 
decreases, but one needs more precise data and procedures to conclude something 
more definite. 
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Fig. 45. The estimated gluOn density distribution in ~he photon, x.rg(x.r)/a, compared 
to predictions of some parameterizations. 

5.8 P a t t o n  D i s t r i b u t i o n  o f  a V i r t u a l  P h o t o n  

So far, we discussed the structure of real or quasi-real  photons. The natural  
question that  one is faced with is what happens to a virtual  photon and whether  
it is legitimate to think that  in DIS of charged leptons on protons it is indeed 
the structure of the proton that  is probed and not some kind of convolution of 
both the structure of the target  and of the probe [114]. The same question could 
be asked in the case of the deep inelastic e 7 scattering. We will re turn to this 
question in the last chapter. 

There exists one result by PLUTO [115] from 1984 which measured the struc- 
ture function of a target  photon with virtuali ty of p2 ~ 0 .4GeV 2, at Q2 
5 GeV 2. There is also an a t tempt  [116] at HERA to measure the s tructure of a 
virtual  photon. The electron calorimeter of the luminosity system taggs photons 
with a median virtuality of p2 ~ 10-5 GeV 2. There is another  calorimeter,  the 
beam-pipe  calorimeter, which taggs photons in the range 0.1 < p2 < 0.6 GeV 2. 
By using these two taggers, one can isolate two jet  events from quasi-real  pho- 
tons, and a similar sample from the virtual  photon reactions. One can then recon- 
struct the w'r-°bs of the photon by using relation (5.37). The distribution of the two 
samples are shown [116] in Fig. 46. For real photons one sees the concentrat ion of 
direct events at high ~x-°bs, and the low x enhancement coming from the resolved 
photon processes. For the higher p2 region, one sees again the peak at high x 
from direct events, but  also a contribution from the resolved photons at lower x. 
This shows tha t  photons with virtualities in the range 0.1 < p2 < 0.6 GeV 2 also 
have structure. 

One can use an operational definition of direct photon reactions by the cut 
xobs > 0.75 and study the ratio of resolved photon to direct photon as function "r 
of the photon virtuali ty p2. This is shown in Fig. 47, which seems to show a 
decrease of this ratio with increasing p2,  as expected. These data  are prel iminary 
and not yet corrected for acceptance effects, which are believed to cancel in the 
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ratio. Further study of this interesting question with more data and to higher 
p2 values is in process. 

5.9 S u m m a r y  

In this chapter we studied the following subjects about the photon: 

- We have introduced the concept of a photon with structure, where the struc- 
ture is attained by the long fluctuation time of the photon into a qq pair 
before it interacts with the proton. Clearly the whole notion of the structure 
of the photon makes only sense when we view its interaction with another 
object. 

- We developed the formalism of two photon reactions in e+e - collisions and 
related the process e7 -+ e X  with that of ee  ~ e e X .  

- We defined the photon structure function through its analogy to the proton 
structure function, defined the patton distribution functions in the photon 
and discussed the DGLAP evolution equation of the photon. These equa- 
tions are inhomogeneous because of the splitting of a photon to a qq pair in 
addition to the splitting functions in the proton case. 

- The point-like and the hadron-like parts of the photon structure functions 
have been described. Both parts are what is contained in the so-called re- 
solved photon. In the direct photon processes the photon interacts directly 
with patton from the other projectile, while the resolved photon reactions 
are a two-step process in which the photon first resolves into its partons, 
one of which takes part in the hard interaction. 

- The theoretical importance of F~ was described as a potential source of 
determining the QCD scale parameter A. However due to problems in the 
low x region when one uses next to leading order corrections, this is not 
possible. 

- We discussed the experimental procedure of obtaining F2 ~ from the data 
and the difficulties involved. At present both the statistical errors and the 
systematic ones are quite large. There is also very little data in the low x 
region. That is the reason why the different parameterizations of the parton 
distributions in the photon differ quite widely in the low x region. 

- Finally, we discussed the question whether virtual photons also have struc- 
ture. Preliminary data indicate that  at least up to a virtuality of about 
p2 ~ 0.6 GeV 2, the photon seems to have structure. 

6 D i f f r a c t i o n  i n  D I S  

The notion of diffraction in high energy physics is not easy to define. The dic- 
tionary defines it as 'the breaking up of a light beam into light and dark or 
coloured bands by passing it through a small opening'. We will describe what 
are the expected behaviour of a diffractive reaction in the introductory section 
after which we will make the connection to Regge theory and to the Pomeron 
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which is the dominant trajectory exchanged in diffractive processes. Next we will 
discuss the different diffractive reactions in photoproduction (Q2 = 0) and the 
discovery of the large rapidity gap events in DIS. The interpretation of these in- 
clusive reactions as DIS on the Pomeron is presented and the partonic structure 
of the Pomeron is discussed. 

6.1 Genera l  I n t r o d u c t i o n  

The best example of a diffractive reaction is the process of elastic scattering A + 
B -+ A + B in which no quantum numbers are exchanged in the t channel. In the 
Regge language one the exchanged trajectory which has the quantum numbers of 
the vacuum the Pomeron trajectory. Thus one usually calls a process diffractive if 
its t channel amplitudes at high energies are determined by Pomeron exchanges. 
A diffractive process [28] has a total cross section practically independent of 
energy, a small real part of the forward scattering amplitude, and a forward peak 
in the differential cross section. Among other characteristics is the predominant 
conservation of s channel helicities of the scattered particles (to be discussed 
later). A non-diffractive process corresponds to exchanges with non-vacuum 
quantum numbers in the t channel and has a cross section decreasing with energy. 

In addition to the elastic scattering, one can have inelastic diffractive pro- 
cesses. These include the single diffraction (SD) and the double diffraction (DD) 
reactions in which the beam and/or the target particles get excited into states 
with the same internal quantum numbers as those of the incoming particles. 

A B 

single diffraction (SD) 

(6.1) 

A * 

A B 

double diffraction (DD) 

(6.2) 
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Some examples of inelastic diffractive processes are: r - p  -+ r - N *  (SD), 
~ - p  --+ a-~p (SD), ~ - p  --+ a-~ N* (DD). 

In general, a diffractive reaction of the type A + B -+ X + B has in addition 
to all the above mentioned characteristic behaviours, a cross section which falls 
with the mass of X like: 

da  1 
dtdM-----~x ~ ~ (6.3) 

In such a diffraction reaction, B is a leading energetic particle such tha t  
EB ~ PL. In this case one has: 

M~c = ( P - p B )  2 = s + m 2 - 2 E s v / s ~  s - -2pLV~ = (1 s- -  ZPL)s = (1--XF)S 

(6.4) 
where xF is the Feynman x. Usually for diffractive reaction xF > 0.9 which 

means ~ < 0.1. One can get this limit using a geometrical argument. The 
coherence is important  for building up the forward peak and thus: 

M~ < 1 (6.5) 
s - 2mAR 

Since the radius R is of the order of ~ l fm -- 5 GeV -1, one gets the condition 
M ~  < 0 . 1 .  

8 - -  

6.2 Dif fract ion and Regge  Formal i sm 

The Regge domain is defined as that  where t is small and ~-x ~ c~. In this 

case one can write the total, elastic and inelastic diffraction cross sections in the 
form: 

(6.6) 

~j 
O" T ~- 

This can be illustrated with the following diagrams: 

2 

J J 

k 

2 2 
dGie~at ----- ~ ~k  (t)~k~ (t) S2[ak (0)- 1] (6.7) 

k 

d2o "ij Zik(O)~2l(t)gkU(t) { S ~ z~'(') (M~)a~(o ) (6.8) 
dtdM~ - ~ 16~rs ~ ]  

k,l 

where the functions ~ and g are vertex functions and o~ is the Regge trajectory. 
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_ 

dt 

J J 

2 

(6.1o) 

2 i i 

d2°i___2J = 
dtdM~ 

• . 

= (6.11) 

j j~,  )wj j 
The Pomeron t ra jectory is the one dominating the diffraction processes. In 

order to describe the properties of diffraction, its t ra jec tory  has the form: 

an,(t) = ~p(0 )  + ~ , ( t ) t  ~ 1 + ~'t  (6.12) 

where for the present discussion we have assumed the Pomeron intercept to be 1 
(taking e = 0). 

- The total  cross section can be expressed as: 

iJ = NIP (0)¢~jlp (0) = const (6.13) (7 T 

If one uses an intercept of 1 + e, one gets a slowly rising cross section like s ~. 
- The elastic differential cross section is: 

2 2 
dae ij _- f~iIP (t)f~lP (t) sa, t (6.14) 
dt 16~rM 2 

If one has a Pomeron intercept somewhat larger than 1, one has an additional 
factor of s 2¢. 
For small t one gets for the differential cross section of elastic scattering the 
sharp diffractive peak: 

d.ie j 2 art e b(8't)t (6.15) 
dt 167r 

where the slope of the exponential behaviour increases with energy like: 

b(s, t) = bo(t) + 2a'  Ins (6.16) 
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We have assumed that the scale in the logarithmic expression is so = 1 GeV 2. 
The slope [30] of the Pomeron trajectory is ~' ~ 0.25 GeV -2. The phenom- 
ena of the increase of the slope with energy is called shrinkage. The shrinkage 
can be seen in Fig. 48 for (a) pp elastic scattering and for (b) ~r-p elastic 
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Fig. 48. The dependence of  the slope b on the laboratory momen tum of  the incom- 
ing projectile for (a) pp elastic scattering and for (b) lr-p elastic scattering. On the 
right-hand side of  the vertical axis the scale is the total cross section aT for (a) pp and 
(b) 7r-p reaction. The corresponding data are approximated by the solid line. 
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scattering. One observes in both  cases a rise of the slope with energy, as 
expected from expression (6.16). The same figure also shows the behaviour  
of the total  pp and l r -p  cross sections, showing the slow increase with energy 
discussed in the former item. 

- The differential cross section of inelastic single diffraction is given by [117, 
118]: 

d2aiJ(s,M~(,t) ~ilp(O)~lp(t)glPPlP(t)  ( s ,~ 2c~'~ 

dtdM~ = ~ \ ~ x x ]  (6.17) 

For small t we can make the same approximation as in the elastic case to 
obtain: 

d2a ij (s, M 2, t) A_A_,bD (8,~)~ (6.18) 
dtdM~ ~ M 2 ~  

This behaviour can be seen for the differential cross section of the inelastic 
diffractive reaction pp -+ X p  shown in Fig. 49 for different s values. As s 
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Fig. 49. The differential cross section/'or the inelastic diffractive reaction pp -4 X p  as 
function of  the scaled diffractive mass M ~  Is.  

increases and one reaches the Regge domain, one sees a clear 1 / M  2 behaviour 
of the cross section. Here too the slope increases with energy like: 

8 
bD(S, t) = bD,O(t) + 2~' In ~ x x  (6.19) 
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All hadronic reactions show an appreciable contr ibut ion of diffractive pro- 
cesses to the to ta l  cross section ( ~  25-40 %), including double dissociation. Is 
this t rue also for photoproduct ion? Can one check it at  HERA? 

6.3 Diffraction in Photoproduc t ion  at H E R A  

What  does one unders tand by diffractive processes in photoproduct ion?  First  one 
has the elastic scattering. In case of photoproduct ion the t rue elastic scat ter ing 
process is 7P -+ 7P. However this is an electromagnet ic  process. The  hadronic 
elastic scat ter ing in photoproduct ion is referred to the react ion 7P --+ V°P, where 
V ° are the neutral  vector mesons. In the VDM picture this process is a two stage 
one. The photon first fluctuates into a vir tual  vector meson, which then scat ters  
elastically from the target  proton. Wi th  this in mind, the following processes 
contr ibute to diffractive photoproduct ion reactions: 

"elastic" ." 7P -4 Vp (V = pO, w, ¢) (not 7P -4 7P) 
photon diffraction : 7P "-~ Xp (X ~ p°,w, ¢) 
proton diffraction : 7P --4 V Y  (Y - ' exci ted '  proton)  

double dissociation : 7P --4 X Y  

This can also be i l lustrated in a VDM picture: 

V V V X V V V X "7 "Y "Y ~ ,  

P P P P P Y 

"elastic" photon diff. proton diff. 

P Y 

double diss. 
(6.20) 

We have already seen how one measures photoproduct ion reactions at  H E R A  
in chapter  2. Is it possible to distinguish [119] diffractive from non-diffract ive 
precesses in these reactions? In order to be able to do so, one needs a large 
rapidi ty phase space. How large is it at  HERA? 

Let us consider the reaction: 

In the 7P center of mass system: 

7P --4 Xp  (6.21) 

p X 
: ~ (6.22) 

In this system the m a x i m u m  center of mass  m o m e n t u m  is: 

c m s  V/8 _ W _ p .  (6.23) 
Pmax ~ 2 2 
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The maximum rapidity of X is cm8 Ymax where the positive direction is taken as tha t  
of the proton: 

1 E + p *  _ (E  +p* )  2 1 W 2 
= I n  p*  _ 1 I n  . . . . .  I n  

E 2 _ p,  2 -- M~: (6.24) 

Therefore the rapidity of the diffractive system X and the diffractive proton can 
be given by: 

1 W 2 
Y x  = - ~ In ~ x x  + boost  to any system 

1 W 2 
yp = ~ In ~ + boost  to any system 

(6.25) 

(6.26) 

The rapidity span Ay is therefore: 

1 W 2 1 W 2 1 [  W 4 ] W 2 
- -  - -  - ~ = In ~xxmp (6.27) Ay = ~ In M~: + 2 In M~ 2 In i ~ : m p  

For M x  ~- 10 GeV and W = 200 GeV the rapidity range is A y  = 8.4. In the 
experimental  analysis one uses the pseudorapidity which is defined as: 

O 
-- - l~ tan  ~- (6.28) 

In Fig. 50 the rapidity distribution of the different photoproduct ion processes 
at HERA are shown [120, 121] together with the regions covered by the ZEUS 
detector. As one can see, much of the phase space is lost in the beam pipe. The 
detector covers only the rapidity range between - 3 . 4  and +3.8. 

Thus, in order to measure the total  cross section one needs to correct for 
these losses. This requires the knowledge of the relative contribution of the dif- 
ferent processes contributing to the total  cross section. Since one can not measure 
them directly, one has to find variables whose distribution is sensitive to the dif- 
ferent processes and fit the distributions to the combinations of cross sections 
which best describe the data. The H1 collaboration [122] used the variables ~max 
and ~mia to determine the cross section of the different processes. The variable 
~max (~min) is defined as the maximum (minimum) pseudo rapidity of all recon- 
structed charged tracks and all clusters in the calorimeter with energy larger 
than 400 MeV. The  results of the H1 measurement,  assuming tha t  the DD cross 
section is in the range 0 < ~DD < 40 ~b, are shown in Table 2. 

The total  cross section is in good agreement with earlier measurements and 
with predictions of Regge motivated models [31, 18], as can be seen from Fig. 51. 
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Fig. 50. The rapidity distribution of the different photoproduction processes at HERA. 
The regions covered by the ZEUS detector are indicated. 

Table 2. Cross-section for the different diffractive contributions at W = 200 GeV. 

process cross section (pb)H 
a("/p ~ Vp) 17.1 :t= 4.3 
a('Tp -+ Xp) 23.4 ~= 11.3 
a(3"p -+ V Y )  8.7 9= 3.6 
a("/p --+ X Y )  20 =t= 20 

!diffractive (el + SD + DD)] [ 69.2 =~ 13.3 
non-diffractive 96.1 =L= 17.9 

II total 165.3 4- 11.2 

R a t i o s  o f  C r o s s  S e c t i o n s  It is of interest to  compare [59] the relative abun- 
dance of processes in ~/p with those in other hadronic reactions. To this end we 
present in Fig. 52(a) the ratio of the elastic to total  cross section for pp, rp ,  
K p  and "rP reactions. As expected, the ratio for ~Sp is larger than  for the 7rp and 
the K p  case. The  7p ratio, though having large errors, is closer to the meson 
initiated reactions, in accordance with VDM expectations. It  is however a bit  
on the low side, since at the HERA energies one would expect this rat io to be 
somewhat larger than the measured ones. 

In Fig. 52(b) the ratio of single diffraction to total  cross section is presented 
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for /Sp and 7P. The ratios for ~/p are somewhat larger than what one would 
naively expect from VDM. The slight deficiency of the elastic rat io and the 
access in the single diffraction case may be correlated and might be due to the 
way the processes are defined in photoproduction.  The  tradit ional  definition of 
the elastic photoproduct ion reaction includes only the first three lightest vector 
mesons pO, w and ¢. Higher vector mesons are included in the single diffraction 
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channel. In view of the slight deviations of the photoproduction results from the 
expectations, one might have to redefine the exact meaning of elastic and single 
diffraction in photoproduction. 

6.4 Large Rapidity Gap Events in DIS 

The diffraction of the real photon can be clearly understood following the dis- 
cussion presented in chapter 5, where a real photon can fluctuate into a qq pair 
and acquire a hadronic structure before interacting with the proton and thus 
producing in some of the time a diffractive process. Due to the shorter fluctua- 
tion time expected for the virtual photon case, it should behave like a point-like 
structureless object which does not diffract. 

It thus came as a big surprise when events of the kind presented in Fig. 53 
were discovered [20, 21] in DIS NC processes. These events had a large rapidity 
gap between the proton direction and the first observable particle produced in 
the collision. None of the Monte Carlo generators written for the HERA region 
could predict the frequency of these events, as was shown earlier in Fig. 10. 

'q=l.l " .  

election ~ .  C 

/ 11=-0.75 

scattered electro 

I I t l l l l r l l l l f l l [ l l t l  
FCAL B CAL RCAL 

Fig. 53. A DIS NC event in the ZEUS detector which has a large rapidity gap between 
the outgoing proton and the other produced particles in the ep collision. 

Are these large rapidity gap indeed diffractive? Why did one not expect 
earlier to see large rapidity gaps near the proton direction? In a DIS reaction 
the virtual photon hits one parton of the proton and produces what one calls 
the current jet. However due to the large colour forces the region between the 
current jet and the proton remnant is filled with radiated gluons and thus if 
one looks for instance at the energy flow [123, 124] as function of the pseudo 
rapidity, the forward region, which is the proton direction, is also filled with 
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Fig.  54. The energy flow of DIS events without a large rapidity gap (open dots) and 
those with a large rapidity gap (r/ma= < 1.8, full dots), for different x, Q2 bins. 
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energy deposition in a regular DIS event. This can be seen in Fig. 54 where the 
energy flow is presented [123] for different x, Q2 regions. The  open da ta  points 
are DIS events. 

When however the vir tual  photon interacts with a colour singlet object ,  as 
would be the case in a diffractive process, the gluon radiat ion in the region 
between the current jet  and the proton remnant  is s trongly suppressed and thus 
there should be no energy flow in the forward region. This  is seen f rom the 
distr ibution of the full da ta  points in Fig. 54, which have been selected as those 
events having ~max < 1.8, meaning large rapidi ty  gap events. 

How can one be sure tha t  these large rapidi ty  gap events are due to a colour 
singlet object  which is exchanged in diffractive reactions and not  for instance 
due to the exchange of a pion, which is also a colour singlet object?  One of 
the expected features of diffractive processes is a very slow energy dependence. 
Indeed the large rapidi ty gap events show this feature. In Fig. 55 one sees [125] on 
the right hand side the ratio of the large rapidi ty  gap events to the inclusive DIS 
events as a function of Bjorken-x for constant  Q2 regions, which is equivalent 
of plott ing the rat io as function of the 7*P cms energy squared W 2. Indeed the 
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Fig. 55. The F2 structure function for the inclusive DIS sample (open circles) and for 
the large rapidity gap events (full dots) as function of  Bjorken-x,  for fixed Q~ intervals. 
On the right hand side of  the figure, their ratio is plotted as function of  x for the same 
Q~ intervals. 
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ratio is very slowly changing with energy and seems to  have roughly the same 
value in all the four Q2 regions. 

Another feature of the large rapidity gap events was that  their  M x  depen- 
dence was consistent with that  expected from a diffractive process. 

One could actually have anticipated the presence of diffraction in DIS, using 
the following argument.  At high energies or equivalently in the low x region 
studied at HERA, the fluctuation t ime of the virtual photon into a state of mass 
rnqq ~ Q2 is [126]: 

1 
t f  ~ 2mpx (6.29) 

where mp is the proton mass. Thus in the HERA regime, a photon of vir tual i ty as 
high as Q2 ,~ 2 - 3 x 103 GeV 2 can fluctuate into a qq pair, which will survive till 
arrival on the proton target.  Therefore even highly vir tual  photons can produce 
diffractive processes which will look very similar to those in the real photon case. 

Thus the large rapidity gap events have all the features expected from events 
produced in a diffractive process and one can interpret  the interaction as tha t  
of a virtual  photon interacting with a Pomeron,  as described in the following 
diagram: 

e e 

(6.30) 

This diagram resembles tha t  of the 7*7 case, discussed in the earlier chapter and 
which allowed to s tudy the structure of the photon. Can we use this picture to 
learn about  the structure of the Pomeron? Does the Pomeron have substructure? 

6.5 D I S  o n  t h e  P o m e r o n  

The first indication that  the Pomeron might have a partonic substructure was 
reported by the UA8 experiment [127, 128]. Figure 56 presents the x of two-  
jet  events in diffractive proton dissociation and shows tha t  an unexpected large 
fraction of the Pomeron's  momentum participates in the hard scattering. 

At HERA [129, 130] one can also see events with jets. In Fig. 57(a) one can 
see an example of a DIS NC one- je t  event which has a large rapidity gap. An 
example of a two-jet  event with large rapidity gap is seen in Fig. 57(b). 

In order to see whether these jets come from a hard scattering, one looks at 
the distribution of the transverse energy, which is shown in Fig. 58. 
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Fig. 56. The x of  two-jet events in diffractive proton dissociation in the UA8 experi- 
ment. 
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Fig. 57. (a) Transverse energy deposition in ~-dp space for a large rapidity gap event 
with one hadronic je t  balancing the electron's transverse momentum.  (b) A similar 
display for a large rapidity gap two-jet  event. 

The observation of high E T  jets in the ~/*p system for the large rapidity 
gap events where there is a noted absence of colour flow, indicate that a natural 
interpretation is the interaction of the virtual photon with partons in a colourless 
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Fig. 58. The distribution of  the total hadronic transverse energy seen in the calorime- 
ter ET, for DIS events with a large rapidity gap and those with, in addition, >_ 1 
(hashed) and >_ 2jets (cross-hashed). On the left hand side, the quantity in the ep 
frame is presented while on the right hand side, in the 7 *P frame. 

object inside the proton, believed to be the Pomeron. 

K i n e m a t i c a l  V a r i a b l e s  When describing the inclusive cross section of a DIS 
event one usually uses the two variables x and Q2. In the diffractive process 
shown in Fig. 59 one uses additional variables. One has the four momentum 

Q2 e' 

W z X 

P t p 

Fig. 59. Diagram of  a diffractive event. 

transfer squared at the proton vertex t defined as: 

t = (P  - p,)2 (6.31) 

The fraction of the proton momentum carried by the Pomeron is defined as: 

( p  _ p , ) q  M 2 + Q2 
xp  - _~ (6.32) 

pq W 2 + Q2 
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Another variable is fl, which is the momentum fraction of the struck quaxk within 
the Pomeron: 

x Q2 
fl - x ~  - M ~  + Q2 (6.33) 

T h e  D i f f r a c t i v e  S t r u c t u r e  F u n c t i o n  With these kinematical variables one 
can define the diffractive structure function in a similar way to tha t  of the 
inclusive DIS structure function, through the differential cross section. In order 
to do so we shall use the following four variables: fl, Q2, x~  and t. 

d4ffdiff 2rOt 2 
d/3dq2dx~,dt - f~Q4 [(I  + (1 _ y ) 2 )  F D ( 4 ) -  y2F2(4) ] (1 +Sz ) (1  +5~) (6.34) 

where a is the electromagnetic coupling constant and the 5i denote corrections 
due to Z ° exchange and due to radiative corrections which are small in the mea- 
sured range. The contribution of FL to the diffractive cross section is not known 
but by restricting the measured y range to small values it can be neglected. 

When t is not measured, an integration over t is performed and one deter- 
mines F D(3) through the relation: 

daa "" 2~ra2 [1 + (1 - y)2]F2D(3)(/3, Q2,x~, ) (6.35) 
d f M Q 2 d x ~ -  /~Q4 

where one neglects the effect of FL and the additional contributions noted above. 

Factor izat ion  a n d  P o m e r o n  S t r u c t u r e  F u n c t i o n  The diffractive s t ructure  
function defined above is describing the inclusive ep diffractive process. We can 
now go one step further and interpret  the diffractive s tructure function as con- 
sisting of two parts. One in which a flux of Pomerons are emit ted from the proton 
and another  part  due to the Pomeron structure function. This is reminiscent of 
the procedure taken when discussing the photon s tructure function. In order to 
do so, one has to assume that  the Pomeron can be t reated like a particle and 
abides to the factorization hypothesis. If so, we can define the Pomeron structure 
function in the following way: 

F D(3) (j3, Q2, x~)  = f ( x l e )F~  (/3, Q2) (6.36) 

where f(x~,) is the function describing the flux of the Pomerons emit ted from 
the proton. According to the Regge model the flux f ( x ~ )  should have an x~  
dependence like: 

1 
f ( x p )  ,,~ - -  (6.37) 

The exponent n is connected to the Pomeron t ra jec tory  through the relation: 

n = 2a~( t )  - 1 (6.38) 
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Since at  present t is not measured, the exponent n gives a t-averaged slope of 
the Pomeron through relation (6.38). One can get the Pomeron intercept by 
assuming a diffractive slope and the slope of the Pomeron trajectory. 

In order to check the factorization hypothesis, the diffractive structure func- 
t ion F f  (3) is measured as function of z~  for fixed/3 and Q~ intervals. If factor- 
ization holds, there should be one universal curve describing all data, up to a 
normalization factor. This is shown [125] in Fig. 60, where indeed one sees tha t  
in the range of variables presented in this figure the factorization hypothesis 
seems to be borne out by the data. The slope of the x~  dependence obtained 
by the H1 collaboration [125] is n = 1.19 4- 0.06(stat) 4- 0.07(syst). The ZEUS 
collaboration [131] finds a slope of n = 1.30 4- 0.08(stat) +0.0s _0.14(syst). We will 
return to these results later. 
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T h e  P a r t o n i c  S t r u c t u r e  o f  t h e  P o m e r o n  In an Ingelman-Schlein [132] type  
of model the Pomeron consists of patrons like a regular particle. How can one 
get information about  the quark and gluon contents of the Pomeron? We will 
discuss three methods to probe the partonic content of the Pomeron.  

Assuming the mome n t um sum rule: If the Pomeron behaves like a regular par- 
ticle which fulfills the momentum sum rule, one can use the flux normaliza- 
tion, either tha t  of Donnachie and Landshoff [133, 134] or tha t  of Ingelman and 
Schlein [132], and assume that  the Pomeron consists only of quarks. In tha t  case 
the quarks saturate  all the momentum of the Pomeron.  The  predictions of this 
assumption can be seen [131] as the lines in Fig. 61, while the data  are presented 
as dots. 
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Fig. 61. The results o f F ~  (s) compared to an Ingelman-Schlein type model for which 
the momentum sum rule (MSR) for quarks within the Pomeron is assumed. 

Note that  non-diffractive background, as well as a 15 % estimate of double 
dissociation has been subtracted from the data. As one sees, the da ta  lies below 
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the predictions indicating that  the quarks carry only par t  of the momen tum of 
the Pomeron. The amount  depends on the expression used for the normalizat ion 
of the flux. 

Diffractive hard photoproduction: One can get information about  the partonic 
content of the Pomeron by studying [135] inclusive jet  cross sections for events 
with large rapidity gaps with respect to the proton direction from the reaction 
ep --+ jet  + X with no detected electron in the final state, thus classified as 
photoproduction.  

When one compares the measured cross sections with pQCD calculations of 
diffractive hard processes, as done in Fig. 62, one may conclude that  the Pomeron 
consists of a large fraction of hard gluons. This conclusion is model dependent.  
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Fig. 62. Measured differential cross section for inclusive jet production for 
EJT et > 8 GeV in the kinematic region Q2 < 4 GeV 2. The shaded band displays the 
uncertainty due to the energy scale of the jets. The lines are predictions using the 
POMPYT generator for various parameterizations of the Pomeron parton densities. 

However, if one combines the photoproduct ion measurement  with the results on 
the diffractive structure function in deep inelastic scattering, discussed above, 
one finds experimental  evidence for the gluon content of the Pomeron.  One fits 
the photoproduction cross section to the expression: 

da  
- BG + ~:p {% * (hard gluons) + (1 - %) * (hard quarks)} (6.39) dr/J et 
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where BG is the non-diffractive background, cg is the fraction of hard gluons and 
~-~p is the momentum sum of the Pomeron. The results of the fits are combined 
with those of the DIS diffractive structure function. This is shown [135] in Fig. 63 
from which one may conclude that  between 30 % and 80 % of the momentum of 
the Pomeron carried by partons is due to hard gluons. 
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Fig. 63. The plane of the variables ~ p  (momentum sum) and cg (relative contribution 
of hard gluons in the Pomeron). The thick solid line displays the minimum for each value 
of eg obtained from the X 2 fit (the shaded area represents the i a band around these 
minima) to the measured da/d~Jet(~haadx < 1.8) using the predictions of POMPYT.  
The constraint imposed in the Ep - cg plane by the measurement of the diffractive 
structure function in DIS (F D(a)) for two choices of the number of flavours (upper 
dot-dashed line for E•q = 0.40 and lower dot-dashed line for E~q = 0.32) is also 
shown. The horizontal dashed line displays the relation E~ = 1. 

Note that  this is independent of the normalization of the flux of Pomerons 
from the proton and does not  rely on assumptions on the momentum sum of the 
Pomeron. 

Evolution equation for the Pomeron structure ]unction: The third method of 
getting information about  the partonic composition of the Pomeron is to as- 
sume tha t  one can apply the DGLAP equations also for the Pomeron structure 
function and perform a global QCD analysis like in the proton case, using the 
equations (4.36) and (4.37). 
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Assuming factorization it is possible to integrate F if(3) (/3, Q2, x p )  over the 
measured region of xm to get a modified Pomeron s t ructure  function P ~  (/3, Q2), 
where the tilde sign indicates that  the Pomeron structure function is only for a 
limited x p  range: 

f agKa2 / ~  (/3, Q2) =_ FD(a) (/3, Q2, x p )  dx~p (6.40) 

At present the measured range [125] is over x p  1 = 3 x 10 -4 and x p  2 = 0.05. 
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The Pomeron structure function F2 ~ (/3, Q2) is shown [136] in the left hand 
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side of Fig. 64 as function of Q2 for different f~ regions. At low f~ it shows the 
positive scaling violation, just like for the proton case. However at high/3, it 
still shows a positive scaling violation, unlike the proton case and more like the 
photon case. The only way to get such a behaviour,  assuming the homogeneous 
DGLAP equations to hold also for the Pomeron,  is to assume a substantial  
gluon component in the structure of the diffractive exchange, as shown on the 
upper right hand side of Fig. 64. As Q2 increases the fraction of the Pomeron 
momentum carried by the gluons decreases somewhat but  still remains in excess 
of 80 %, as seen in the bot tom right hand side of the figure. 

T h e  P o m e r o n  I n t e r c e p t  f r o m  D I S  D i f f r a c t i o n  It  is of interest to compare 
the Pomeron intercept as extracted from the DIS diffractive reactions to tha t  
obtained from photoproduct ion and from hadronic diffractive processes. We will 
present here two methods of obtaining the Pomeron intercept in DIS. One is 
using the relation (6.38) which connects the exponent  n of the Pomeron flux 
with its trajectory.  The other is to look at the W dependence of the differential 
cross section with respect to the diffractive mass M x .  One can of course also use 
the W dependence of other reactions, like the  total  3'*P cross section or tha t  of 
exclusive vector meson production in DIS, to get information about  the Pomeron 
intercept. This will be discussed in the next chapter. 

a p  from n: The exponent n of the Pomeron flux is related to the Pomeron 
t ra jectory through (6.38). In order to obtain the Pomeron intercept from the t -  
integrated value of n one usually assumes a diffractive slope of about  5-6 GeV -2 
and a slope of the Pomeron t ra jectory ~ ~ 0.25-0.3 GeV -2 [30]. 

The values presented [125, 131] in section 6.5 were based on low statistics 
data  and thus had large errors for carrying out a meaningful comparison. The 
higher luminosity data  allow a more detailed s tudy of the behaviour of n. The 
value of n is shown [137] in Fig. 65(a) as function of/~, integrated over the 
measured Q2 range and in (b) as function of Q2 integrated over the measured 
/~ range. The improved precision and enhanced kinematic range clearly reveals 
deviations from the universal factorization observed in Fig. 60. While there  is no 
obvious dependence on Q2, one sees that  the value of n decreases significantly 
with f~ for f~ < 0.3, corresponding to large M x  values. One possible explana- 
tion [136] of this decrease, without abandoning the hypothesis of factorization, is 
to assume tha t  in addition to the Pomeron there is a small contribution from the 
exchange of meson trajectories such as the f°(1270),  for which one would expect  
n ,-, 0. With  this assumption one can explain the behaviour of n by a superpo- 
sition of a Pomeron t ra jectory having n p =  1.29 ± 0.03(stat) ± 0.07(syst) and 
n M =  0.3 =[: 0.3(star) ± 0.6(syst). From these values and from using the  diffrac- 
tive slope and Pomeron t ra jectory slope as mentioned above, one gets [136] a 
Pomeron intercept: 

a~(0)  = 1.18 ± 0.02(stat) ± 0.04(syst) (6.41) 



452 A. Levy 

H 1  P r e l i m i n a r y  1 9 9 4  

--~ 1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 o 

1.6 

1.4 

1.2 f 

I 

0.8 

0.6 

0.4 f 

0.2 

0 
1 

a) b)  

~:; 0:~ . . . . .  06 ~:~ . . . . . . . . . . . . . . . . . . .  ,0 1o 2 
QZ / GeV2 
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The intercept for the meson t ra jectory comes out from the fit to be ~ M ( 0 )  ---- 

0.6 4-0.1(star) 4-0.3(syst), consistent with the value expected for the t ra jec tory  
associated with the f2 meson. 

With the use of the leading proton spectrometer  (LPS) [4] one can actually 
measure the t distribution of the diffractively produced DIS reactions in a limited 
1~ range. This was done [138] for the kinematic range 4 < Q2 < 30 GeV 2, 70 < 
W < 210 GeV and 0.02 </3  < 0.4 and is displayed in Fig. 66. The resulting value 
of the slope is b = 5.9 4-1.3(stat)+_~:~ (syst) GeV -2. The  LPS data  have been used 
to extract  the diffractive structure function and yielded [138] an exponent  value 
of n~  = 1.28 4- 0.07(star) 4- 0.15(syst) which can be converted to a Pomeron 
slope of 

~p(o)  = 1.17 ± o.04(stat) ± o.o8(syst) (6.42) 

in good agreement with the value in (6.41). Note tha t  in case of the LPS mea- 
surement the outgoing proton is detected and thus one has no corrections for 
background or for double dissociation processes. 

a~  from the W dependence of the diffractive cross section: One can use the re- 
action "y*p --4 X N ,  where N is a nucleonic system with MN < 4 GeV, to measure 
the diffractive differential cross section dadi~/dMx.  This differential cross sec- 
tion has a W dependence which in the Regge model is given by (W2) ( 2 ~ - 2 ) .  A 
novel method of extracting the diffractive cross section from the non-diffractive 
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Fig. 66. Differential cross section da/d t  for diffractive DIS events with a leading proton 
with a longitudinal momen tum fraction xL > 0.97, in the range 4 < Q2 < 30 GeV 2, 
70 < W < 210GeV and 0.02 < ~ < 0.4. 

background is the realization tha t  for the lat ter  low In M R of the hadronic sys- 
tem observed in the detector are exponentially suppressed. This can be seen [139] 
in Fig. 67 for the W range of W = 60 - 245 GeV at Q2 = 31 GeV 2. One sees 
that  the non-diffractive contribution moves to larger In M R values proport ional  
to In W 2. 

The differential cross section for the diffractive DIS reaction was determined 
as function of W for different M x  and Q2 regions. In each ( M x ,  Q2) bin, a fit 
of the form: 

dcrdiff(Mx, W, Q2) , . ~  (W2) (2c~P-2) (6.43) 
dMx 

was performed, yielding a series of values for the Pomeron intercept for each 
( M x ,  Q2) bin. One gets intercept values consistent with those mentioned in the 
earlier section. 

How can one understand the Pomeron intercept values in DIS? They  seem to 
be significantly higher than the value of 1.08 obtained from photoproduct ion or 
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hadronic reactions. Is it a different Pomeron? Are there two Pomerons? Does one 
approach the BFKL Pomeron of an intercept of 1.5 when measuring at higher 
Q2 values? We will discuss these questions in the next chapter. 

6.6 S u m m a r y  

In this chapter we discussed the following issues: 

- We defined some basic concepts connected with diffractive processes and 
showed their connection with the Regge formalism. In particular we discussed 
the trajectory intercept and its relation to the total and diffractive cross 
section. In addition we discussed the shrinkage of the elastic scattering slope. 

- The diffractive phenomena is clearly observed in photoproduction reactions 
with a rate similar to that in hadronic reactions. 

- Diffractive processes are present also in DIS reactions due to the fluctuations 
of highly virtual photons in the low x region. These processes are observed 
as a high rate of large rapidity gap events in DIS reactions. This opens up 
the possibility of studying DIS on the Pomeron. 

- Observation of jets in DIS diffractive processes indicate that one could inter- 
pret them as the interaction of the virtual photon with partons within the 
Pomeron. 

- We defined the diffractive structure function and checked that experimen- 
tally the factorization hypothesis holds in case of the Pomeron, over the 
measured kinematic region. 

- The partonic content of the Pomeron was studied and evidence was shown 
for a large gluonic component in the Pomeron, carrying a large fraction of 
the Pomeron momentum. 

- The Pomeron intercept as determined in DIS processes seems to be signifi- 
cantly larger than that determined from photoproduction and hadronic total 
cross section. 

7 I n t e r p l a y  B e t w e e n  S o f t  a n d  H a r d  I n t e r a c t i o n s  

This chapter deals with the interrelations of soft and hard processes. We know 
how to calculate hard processes by using pQCD. However when we compare 
the calculation with data we would like to isolate only the hard part. Do we 
really know how to do it? Are the two processes completely separable? How can 
one define hard reactions? These questions will be discussed in this chapter. For 
completeness and easy reading, some of the arguments presented in the earlier 
chapters will be repeated. 

7 . 1  I n t r o d u c t i o n  

One of the aims of building HERA was to study the deep inelastic scattering 
(DIS) region with data at low x and high Q2. Yet, recently efforts are being made 
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to get to lower and lower Q2 values in the low x region in order to s tudy the tran-  
sition from photoproduct ion to the DIS regime. The main motivat ion for looking 
at the transit ion region is the following: at Q2 = 0 the dominant  processes are 
of non-per turbat ive  nature and are well described by the Regge picture. As Q2 
increases, the exchanged photon is expected to shrink, one expects per turbat ive  
QCD to take over and therefore to be able to make exact calculations to confront 
with data. Wha t  can one learn from the transition between soft processes (low 
virtuality) and hard processes (high virtuali ty)? Where does the change take 
place? Is it a sudden transition or a smooth one? The transit ion should shed 
light on the interplay between soft and hard interactions. 

7.2 Operational Definition 

It is not completely clear what one means by soft and hard interaction. One 
would have hoped that  by going to the region of DIS one has a bet ter  way of 
probing the hard interactions. As a guideline to help distinguish the two, let us 
define some operational criteria for what we would consider as a soft and as a 
hard process. We can not do it in the most general terms, but  let us concentrate 
on some selected measurements: total  cross sections and elastic cross sections, 
the first being the most inclusive and the lat ter  the most exclusive measurement  
we can make. At high energies, both these processes are dominated by a Pomeron 
exchange. 

As discussed earlier, the total  7r±p, K+p, pp, pp and 7P cross sections show a 
slow dependence on the center of mass energy W, consistent with the so-called 
soft pomeron [31], having a t ra jectory 

a p ( s o f t  ) ~--- 1.08 + 0.25t (7.1) 

The hard or the perturbat ive Pomeron,  also called the Lipatov Pomeron or the 
BFKL [60, 61, 62] Pomeron, is expected to have a t ra jec tory  

12 In 2 
O~F(hard ) ---~ 1 + a s  (7.2) 

r 

The definition of the hard ]P is quite vague. First, the value of the intercept 
which is usually taken as 1.5 is a very rough estimate using the expression of 
the expected power of the reggeized gluon. Using a leading order calculation 
in In 1/x, the distribution of the momentum density of the gluon is expected to 
have the form xg(x, Q2) ~ x -~  where :k = ~s/0.378.  Although usually the value 
of A is taken to be 0.5 [140, 141], one should note tha t  this requires a value of 
a s  -- 0.18, which happens only at large Q2, whereas the BFKL calculation is 
expected to be valid for moderate Q2 values. The second comment  about  the 
assumed hard IP form is the fact tha t  the slope of this t ra jec tory  is taken to be 
zero. The reason for this assumption can be understood intuitively by the fact 
that  the slope is inversely proportional  to the average transverse momentum 
square of hadrons, which is expected to be much larger in hard interactions 
compared to soft ones. 
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T a b l e  3. Expected behaviour of soft and hard processes. 

ilquantity IW dep Isoft Ihard 

 Zo': °8 I(w ) °5  

Following the above definitions of the soft and the hard Pomeron, we have 
some expectations for the behaviour of the total 7*P cross section, a "r*p and the t o t  , 

elastic one, which in the HERA case is the reaction a(7* p --~ Vp) .  These are 
presented in Table 3. 

Before turning to the actual data, let us review some of the models relevant 
for the low x and low Q2 region. 

7.3 The  Mode ls  for the  Low x Low Q2 Region  

Donnachie  and  Landshof f  (DL) Donnachie and Landshoff [31] found a sim- 
ple Regge picture describing all hadron-hadron cross sections with a sum of two 
terms, that  of a Pomeron exchange and that of a reggeon. They showed this 
picture to describe also real photoproduction cross sections. They extended the 
picture for virtual photons (7", Q2 < 10 GeV 2) to see what is the expected contri- 
bution of the non-perturbative mechanism to higher Q2 [142, 74]. The main in- 
terest is in the low x region where the Pomeron dominates and thus the question 
of interest is what is the contribution of the 'soft' pomeron at intermediate Q2. 

Capel la ,  Kaidalov ,  Mer ino,  T r a n - T h a n - V a n  ( C K M T )  In this picture 
[143, 144] there is no 'soft' or 'hard' Pomeron, there is just one 'bare' Pomeron. 
At low Q2 absorptive corrections (rescattering) give a Pomeron with an effective 
intercept of 1+/!o(/10 ,-- 0.08). If one uses an eikonal approach, the bare intercept 
becomes 1 + A1(/11 ~ 0.13). A more complete absorptive calculation results in 
1 +/12 (/12 "~ 0.24). The absorptive corrections decrease rapidly with Q2. They 
parametrize the data with this behavior of the Pomeron up to Q2 < 5 GeV 2 and 
use it then as initial conditions to a pQCD evolution. 

Badelek  and  Kwiecinski  (BK) Badelek and Kwiecinski [145, 146] describe 
the low Q2 region by using the generalized vector dominance model (GVDM): 
the proton structure function F2 is represented by the contribution of a large 
number of vector mesons which couple to virtual photons. The low mass ones, 
p, w, ¢ contribute mainly at low Q2, while the higher mass are determined by 
the asymptotic structure function F A s  which is described by pQCD. The total 
structure function is given by a Q2 weighted sum of the two components. 
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Abramowicz ,  Levin,  Levy~ Maor  (ALLM)  This parameterization [18, 19] 
is based on a Regge motivated approach extended into the large Q2 regime in 
a way compatible with QCD expectations. This approach allows to paxametrize 
the whole x, Q2 phase space, fitting all the existing data. 

Some Genera l  C o m m e n t s  The DL parametrization provides a good way to 
check to what value of Q2 the simple 'soft' Pomeron picture can be extended. 
It is not meant to be a parameterization which describes the whole DIS regime. 
The CKMT and BK parametrizations are attempts to get the best possible 
presentation of the initial conditions to a pQCD evolution. The ALLM does not 
use the regular pQCD evolution equation but parametrizes the whole of the DIS 
phase space by a combination of Regge and QCD motivated parametrizations. 

All parameterizations make sure that as Q2 ~ 0 also F2 -~ 0 linearly 
with Q2. 

D e t a i l s  o f  t h e  P a r a m e t r i z a t i o n s  

The DL parameterization: The proton structure function F2 is given by 

F2(x, Q 2 )  ~ A~-O•OSOS¢(Q2) + B ~ o . 4 5 2 5 ¢ ( Q 2 ) ,  (7.3) 

where ~ is the rescaled variable 

= x 1 + , (7.4) 

with x being the Bjorken-x and the scale variable # has different values for 
different flavors: for u and d quarks # = 0.53GeV, for the strange quark s, 
# = 1.3 GeV and for the charm quark c, # = 2 GeV. The two functions ¢(Q2) 
and ¢(Q2) make sure that the structure function vanishes linearly with Q2 as 
Q2 -+ O, 

02 02 
¢(Q2) = Q2 + a ¢(Q2) : Q2 + b" (7.5) 

The four parameters A, B, a and b are constrained so as to reproduce the total 
real photoproduction data, 

A • 2~--0 0808 B/~2) 0"4525 = 1.15. (7.6) a (  . ) ' =0.604 b" 

In addition there is also a higher-twist term ht(x, Q2) contributing to the struc- 
ture function, 

ht(x, Q2) ___ D X2! 1 - ~)2 , (7.7) 
1 + 

with the parameters D = 15.88 and Q0 -- 550 MeV. 
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The CKMT parameterization: Contrary to the DL parameterization, the CKMT 
assumes that  the power behavior of x is Q2 dependent, 

Q2 l+a(Q 2) 
F~(x, Q 2) 

Q2 ~R 

where c~R is the Reggeon trajectory intercept, the power n(Q 2) is given by 

n(Q 2) = 1 + Q2 

and the power behavior of x is given by 

Q2 
: ÷ (7.10) 

The constant parameters axe determined by the requirement tha t  F2 and the 
derivative dF Q2 at -- Qo 2 to coincide with that  obtained from the pQCD 

evolution equations. They can do so at Q2 = 2 GeV 2, provided a higher-twist  
term is added to that  of pQCD, 

F2(x, Q2) = FPQCD (x, Q2) (1+ ]Q(--~x2--~) ) (7.11) 

for Q2 _> Q0:. The values of the parameters are: A = 0.1502, a = 0.2631 GeV 2, 
A0 = 0.07684, d = 1.117 GeV 2, b = 0.6452 GeV 2, aR = 0.415, c = 3.5489 GeV 2. 

The BK parameterization: The proton structure function is written as the sum 
of two terms, a vector meson part (V) and a paxtonic part  (par), 

F2(x, Q2) = FV (x, Q2) + FP2ar(x, Q2). (7.12) 

The part representing the contribution from vector mesons which couple to the 
virtual photon is given by 

Q2 M4av(W 2) (7.13) 
FV(x, Q2) = ~_~rZv 72(Q 2 + M~) 2' 

where ~/~/(4~r) is the direct photon vector meson coupling, W is the 7*P center 
of mass energy and av is the total  Vp cross section. The sum is over all vector 
meson satisfying M~ < Q2, where Mv is the mass of the vector meson and Q0 
is a parameter. 

The paxtonic part of the structure function is given by the expression 

Q2 
F~ar(x, Q2) _ Q2 -~ Q~ PAs(2' Q2 + Q~), (7.14) 
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where the asymptotic  structure function F As is given by pQCD at the scaled 
value of 

Q2 + (7.15) 
= W 2 + Q 2 _ M  2 + Q ~ ,  

where M is the proton mass. In practice the parameterizat ion uses Q~ = 1.2 GeV 2 
and thus sums over the contribution of the 3 lightest vector mesons p, w and ¢. 

The ALLMparameterization: This para.meterization a t tempts  to cover the whole 
x, Q2 region above the resonances (W 2 > 3 GeV2), at the expense of introduc- 
ing more parameters  than the other parameterizations.  The  proton s t ructure  
function has the form 

Q2 (F2P(x, Q2) + F2n(x, Q2)) (7.16) F2(x,Q2) - Q2 + M 2 

where Mo is the effective photon mass. The functions F ~  and F ~  are the con- 
tr ibution of the Pomeron :P or Reggeon T~ exchanges to the s t ructure  function. 
They take the form 

F2P (x, Q2) = c.p (t)x~, ~ (~) (1 - x) b~'(~), (7.17) 
Fn(x ,  Q2) = cn(t)x~n(t) (1 - x) bu(t). 

The slowly varying function t is defined as 

t = In ~ . (7.18) \ln ) 
The two scaled variables xp  and x n  are modified Bjorken-x variables which 
include mass parameters  Mp and M7¢ which can be interpreted as effective 
Pomeron and reggeon masses: 

WU_M 2 1--- --- 1 + Q2-----4--~ , 
~" ~v2 M ~ (7.19) 

7.4 Comparison to Data  

~,*p 
T h e  T o t a l  ~y*p Cros s  Sec t i on ,  ¢rto tT*p The total  7*P cross section, a~o ~ , can 
be related to the proton structure function/72 through the relation 

F2(x, 0 2) = Q2(1 - x) Q2 2 
4r2c~ Q2 + 4m2pX 2 ato~ (x, Q ) (7.20) 

where the total  7*P includes both the cross section for the absorption of trans- 
verse and of longitudinal photons. In this expression the Hand [47] definition of 
the flux of virtual  photons is used. 
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Figure 68 presents the dependence of ato tT*p, obtained through ((7.20)) from 
the measured F2 values [15, 16], on the square of the center of mass energy W 2, 
for fixed values of the photon virtuality Q2. The new preliminary very low Q2 
measurements of the ZEUS collaboration [147], as well as those of the NMC 
collaboration [52] are included in the figure. Also shown are the measurements of 
the total  real photoproduction cross sections. While the da ta  below Q2 = 1 GeV 2 
show a very mild W dependence, the trend changes as Q2 increases. Note tha t  
for higher values of Q2 one sees the typical threshold behaviour for the case when 
W 2 < Q2 [17]. The curves are the results of a new ALLM type parametrization 
which added to the earlier data  used in the previous fit da ta  from E665 [148] 
and the published HERA [149, 150] data. 
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Fig. 68. The total ~/*p cross section as function of  W 2 from the F2 measurements for 
different Q2 values. The/ /nes are the expectations of  a new A L L M  type parametriza- 
tion. 
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Instead of comparing the data  as presented in Fig. 68 with the different 
parameterizations,  it is more economical as well as instructive to s tudy the energy 
dependence of the 7*P cross section for fixed Q2 values [59]. In order to see how 
the slope of the W dependence changes with Q2, the cross section values in the 
region where W 2 >> Q2 were fitted to the form (rZo*~ p -- a l W  2n for each fixed 
Q2 interval. The  resulting values of A from the fit are plot ted against Q~ in 
Fig. 69. Similar results have been obtain by the H1 collaboration [16] who use 
only their own data  to fit the s t ructure function measurements to the form 
F2 "- x -z~. Also included in the figure are the recent prel iminary results of the 
ZEUS collaboration [147] in the region 0.2 < Q2 < 0.8 GeV 2. One can see the 
slow increase of A with Q2 from the value of 0.08 at Q2 __ 0, to around 0.2 
for Q2 ~ 1 0 . . .  20 GeV 2 followed by a further increase to around 0 .3 . . .  0.4 at 
high Q2. One would clearly profit from more precise data,  expected to come 
soon. 
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Fig. 69. The Q2 dependence of the parameter ,4 obtained from a fit of the expression 
-r'p _ _ u;2,a to the data in each Q2 bin. The curves are the expectations of the G t o  t - -  U l  VV 

parameterizations mentioned in the text. 

The curves are the expectations of the DL, BK, CKMT, and the updated  
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ALLM parameterization,  which includes also some of the recent HERA da ta  in 
its fit. In addition, the expectations of the GRV [73], CTEQ  [72] and MRSG [70] 
are also shown. 

The DL parameterizat ion can describe the da ta  up to Q2 .~ 1 GeV 2. All 
the others give in general the right features of the Q2 behavior with a smooth 
transit ion from soft to hard interactions with an interplay between the two in 
the intermediate Q2 range. 

V e c t o r  M e s o n  P r o d u c t i o n  in  ~/p a n d  in  ~/*p Given the behaviour of the 
a~o ~ data, what kind of energy behaviour would one expect for the 'elastic' 
process 7*P --~ Vp for real and virtual photons? In case of photoproduct ion  
we have seen tha t  the total  cross section follows the expectations of a soft DL 
type ]P. Thus if one takes into account the shrinkage at the HERA energies, one 
expects a(~p -+ Vp) ~ W °'22. In case of DIS product ion of vector mesons in the 
range Q2 ~ 1 0 . . .  20 GeV 2, the expectations are a(7*P ~ Vp) ~ W °'s, since in 
this case one expects almost no shrinkage. 

Figure 70 presents the measurements of the to ta l  and 'elastic' vector meson 
photoproduct ion cross sections as function of the 7P center of mass energy W. 
As one can see, the high energy measurements of the total  and the p [151, 152], 
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Fig.  70. The total and 'elastic' vector meson photoproduction measurements as func- 
tion of  W ,  for the vector mesons p,w, ¢ and J/gL The curve to the total photoproduc- 
tion cross section is the DL parametrization (W°'lo).  The other lines are cur~ ~ o£ the 
form W °'22 and W °'s. 
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w [153] and ¢ photoproduction [154] follow the expectations of a soft DL type 
Pomeron. However, the cross section for the reaction 7P --+ J/kVp [86, 155] rises 
much faster than the expected W °'22 rise from a soft reaction. In fact, it can be 
well described by a power behaviour of ,~ W °'s. This surprising behaviour can 
be understood if one considers the scale which is involved in the interaction. In 
case of photoproduct ion reaction, the scale cannot be set by the photon since 
Q2 __ 0. The scale is set by the mass of the vector meson and by the transverse 
momentum involved in the reaction. Thus, for the lighter vector mesons the scale 
is still small enough to follow a soft behaviour. However, the mass of the J/~P is 
large enough to produce a scale which would be considered as a hard interaction. 

The reaction 7*P -+ pop has been measured [156, 157] at six Q2 values from 
0.48 to 20 GeV 2 and is shown in Fig. 71. One observes tha t  the W dependence 
gets steeper as Q2 increases. In order not to be dependent on the normalizations 
of different experiments, the ZEUS da ta  alone has been fitted to a W a form. 
Though the data  has quite large errors which is reflected in the large errors on 
the power a, one sees the trend of increasing a with Q2. 
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Fig. 71. The dependence of the cross section for the reaction 7*P --+ pop on W, for 
different Q2 values. 

The reaction 7*P --+ CP has been measured [158] for Q2 of 8.2 and 14.7 GeV 2 
and is presented in Fig. 72. In this case, one has to use the lower W NMC data  
to get the slope of the energy dependence. It is steeper than  tha t  expected for a 
soft process and is compatible with the W °'s observed for the photoproduct ion 
J/kV case. For comparison, the Q2 = 0 photoproduct ion with the shallow W 
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dependence is also shown. 
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Fig. 72. The dependence of the cross section for the reaction 7*P -+ qbp on W, for 
different Q2 values. 

The J / ~  vector meson already shows a steep W dependence for the photo- 
production case. In Fig. 73 the photoproduct ion cross section is shown together  
with measurements of the reaction "),*p -+ J / ~ p  at Q~ -- 10 and 20 GeV 2. 

These results are consistent with the Q2 dependence of A as shown in figure 

69. 
The ratio of the higher mass vector mesons to p0 cross sections is expected 

according to SU(4) to be: 

pO :w : ¢ : J / ~  = 9 : 1 : 2 : S (7.21) 

This relation is quite badly broken in photoproduct ion for ¢ and for J /~ .  For the 
case of the ~b it is about  0.07 and for the J / ~  it is somewhat W dependent  and 
at the HERA W range it is about  0.005 for Q2 __ 0. As Q2 increases one expects 
the SU(4) relations to be restored. For much higher Q2 values one expects these 
relations to be broken again in the opposite direction. 

In Fig. 74 the ratio R ( V ° / p  °) is presented as function of the vector meson 
mass squared M~,  for different Q2 values as indicated next to the da ta  points. 
One observes first tha t  as the mass of the vector meson gets larger, the ratio 
becomes smaller and reaches a value of < 10 -3 for the ~ ' .  As Q2 increases the 
ratio get larger. It reaches close to the expected value of 2 : 9 for the ¢, close to 
0.4 for the p', and ~ 1 for the J /~ .  
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Fig. 73. The dependence of  the cross section for the reaction 7 *P --> J / P P  on W ,  for 
different Q2 values. 
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What  can we learn from the behaviour of the slope? Does one see any shrink- 
age? It is not easy to conclude about that  since there is no single experiment 
that has enough of a W range lever arm to measure shrinl~ge in one experi- 
ment. One thus is dependent on the systematics of different experiments. The 
photoproduction data of all three vector mesons pO, w and ¢ are consistent with 
shrinkage (see Fig. 75). What  about the vector mesons produced in DIS? 
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Fig. 75. The dependence of the slope of the differential cross section 

The dependence of the slope of the differential cross section for the reaction 
,,/,p __+ pop on W, is shown in Fig. 76 for 8 < Q2 < 50GeV 2 (H1) and 5 < 
Q2 < 30 GeV 2 (ZEUS). The NMC data point is at Q2 ~ 10 GeV 2. The HERA 
data alone can not, with the present measurement errors, distinguish between 
the shrinkage or non-shrinkage of the slope. Even with the addition of the NMC 
point the situation is not clear and one has to await more precise data. 
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One does however see a decrease of the slope with Q2 in case of the exclu- 
sive pO production in DIS. The slope seems to decrease from a value of about  
10 GeV -2 at Q2 = 0 to about  5 GeV -2 at about  Q2 = 20 GeV 2. This result 
is consistent with the fact tha t  as the scale gets larger, the reaction becomes 
harder  and in case of hard processes all vector mesons are expected to have the 
same universal slope. This effect is nicely seen in the case of J / g ,  where due to 
its large mass there is a hard scale already at Q2 = 0, and thus the slope shows 
no change with Q2. 

It  is worthwhile to note tha t  the properties observed for vector mesons have a 
natural  explanation in QCD, where vector meson product ion with a large scale 
can be described by an exchange mechanism of a Pomeron consisting of two 
gluon. For example, in the case of the model of Brodsky et al. [159] one expects 
tha t  the differential p0 cross section produced by longitudinal photons should be 
proport ional  to the gluon distribution in the proton: 

da . , [~s(Q2)xg(x,  Q2)]2 
-~(~/LP -+ pOp) ~ Q6 Cp (7.22) 

Since at low x values [~s(Q2)xg(x,  Q2)]2 ~ Q and since the kT dependence of 
the pO wave function introduces [160] another  Q0.5 dependence, the expectations 
of the QCD calculation are tha t  the data  should have a Q= dependence, where 

.. 4 2 + 0  8 +1"4 and the H1/157] n = 4.5 .5. The ZEUS [156] experiment finds n . . . .  0.5 
experimental  result is n = 4.8 =t= 0.8 (statistical error only). The x dependence of 
the ZEUS [156] measurement is consistent with their gluon determinat ion from 
their F2 measurement.  

7.5 DIS  P r o c e s s e s  - H a r d  o r  So f t ?  

What  have we learned from the behavior of the data  with Q2? Wha t  are we 
actually measuring? At low Q2 the photon is known to have structure. Does F2 
still measure the structure of the proton? Bjorken [161] pointed out tha t  physics 
is not frame dependent. The structure of the proton alone has no meaning. One 
has to  s tudy the 7*P interaction. 

Let us look at the structure of a photon. It is a well known fact tha t  real 
photon behave like hadrons when interacting with other hadrons. One way to un- 
derstand this is by using the argument of Ioffe [88, 89]: the photon can fluctuate 
into a qq pair. The fluctuation t ime is given by 

2E~ (7.23) 
t f  = m2 q 

where E~ is the photon energy in the rest system of the proton and mqq is 
the mass of the qq system into which the photon fluctuates. The Vector Domi- 
nance Model assumes that  the fluctuation of the photon is into vector mesons, 
rnqq ~_ m y ,  where m y  is the vector mesom mass. As long as t I >> ti, where the 
interaction t ime ti ~ rp, with rp being the proton radius, the photon interacts 
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as if it were a hadron. When the photon becomes virtual with a negative square 
mass of Q2, its fluctuation time becomes 

2E~ (7.24) 
= + Q2 

and thus at low energies and moderate Bjorken x, the fluctuation time becomes 
small and the virtual photon behaves like a point-like structureless object, con- 
sistent with the DIS picture described above. 

However, at high energies or equivalently in the low x region studied at 
HERA, the fluctuation time of a virtual photon can be expressed as 

1 
t f  ~ 2 M x  (7.25) 

where M is the proton mass. This can be derived easily from formula (5.1) 
2 ~ Q2 [126]. Thus in the HERA regime, a photon of virtuality as assuming mqq 

high as Q2 ,.. 2 - 3 x 103 GeV 2 can fluctuate into a q~ pair, which will survive 
till arrival on the proton target. 

The photon can fluctuate into typically two configurations. A large size con- 
figuration will consist of an asymmetric qq pair with each quark carrying a small 
transverse momentum kT (fig. 78(a)). For a small size configuration the pair is 
symmetric, each quark having a large kT (fig. 78(b)). One expects the asymmet- 
ric large configuration to produce 'soft' physics, while the symmetric one would 
yield the 'hard' interactions. 

(o) (b) 
Fig. 78. Fluctuation of the photon into a qC1 pair in (a) asymmetric small kT configu- 
ration, (b) into a symmetric large kT configuration 

In the aligned jet model (AJM) [162] the first configuration dominates while 
the second one is the 'sterile combination' because of color screening. In the 
photoproduction case (Q2 = 0), the small kT configuration dominates. Thus 
one has large color forces which produce the hadronic component, the vector 
mesons, which finally lead to hadronic non-perturbative final states of 'soft' 
nature. The symmetric configuration contributes very little. In those cases where 
the photon does fluctuate into a high kT pair, color transparency suppresses their 
contribution. 
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In the DIS regime (Q~ # 0), the symmetric contribution becomes bigger. 
Each such pair still contributes very little because of color transparency, but the 
phase space for the symmetric configuration increases. However the asymmetric 
pair still contribute also to the DIS processes. In fact, in the quark parton model 
(QPM) the fast quark becomes the current jet and the slow quark interacts with 
the proton remnant resulting in processes which look in the 7*P frame just like 
the 'soft' processes discussed in the Q2 m 0 case. So there clearly is an interplay 
between soft and hard interactions also in the DIS region. 

This now brings up another question. We are used by now to talk about the 
'resolved' and the 'direct' photon interactions. However, if the photon always 
fluctuates into a qq pair even at quite large values of Q2, what does one mean by 
a 'direct' photon interaction? To illustrate the problem, let us look at the diagram 
describing the photon-gluon fusion, which is usually considered in leading order 
a direct photon interaction and is shown in Fig. 79(a). An example of a resolved 
process is shown in Fig. 79(b) where a photon fluctuates into a qq pair with a 
given kT, following by the interaction of one of the quarks with a gluon from the 
proton to produce a quark and a gluon with a given PT. 

g g 

PT 

(o) (b) 

Fig. 79. Diagrams describing examples of (a) 'direct' photon process, (b) 'resolved' 
photon process 

In the diagram shown in Fig. 79(b) there are two scales, kT and PT. The 
classification of the process as 'direct' or 'resolved' depends on the relations 
between the two scales. If kT << PT we call it a resolved photon interaction, while 
in the case of kT >> PT one would consider this as a direct photon interaction. 
Practically in the latter case the PT is tOO small to resolve the gluon and the 
quark jets as two separate jets, thus making it look like the diagram in Fig. 79(a). 
At low Q2 the more likely case is that of kT << PT and thus the resolved photon 
is the dominant component, while at high Qg. the other case is more likely. A yet 
open question is how does one deal with the case where kw ,~ PT. 

7.6 S u m m a r y  

We can summarize the results and discussions of this chapter in the following 
way: 
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- We have presented an operational definition of what we call soft and hard 
interactions by using the total cross section and the elastic process. The 
energy behaviour of the total and the elastic cross section is expected to be 
much steeper for hard interactions than for soft ones. In addition, the slope 
of the elastic differential cross section should shrink in the soft interactions 
while show no or very little shrinkage in case of hard interactions. 

- The models describing the low-x low Q2 region were discussed and compared 
to data. The energy behaviour of the total 7*P cross section shows a smooth 
transition from a shallow dependence at low Q2 to a steeper one at higher Q2. 

- The vector meson exclusive production, which can be considered as the elas- 
tic processes for the photon case, follow the energy dependence behaviour 
of the total cross section. The W dependence get steeper for the pO and ~b 
as Q2 increases while it is already steep for the J/~P produced in the elastic 
photoproduction process. 

- When a large scale is present, being the virtuality of the photon or the mass 
of the vector meson, the cross section is consistent with a rise driven by 
the rise of the gluon momentum density zg(x, Q2) with W. The Pomeron 
exchange mechanism described by two gluons gives results consistent with 
the data. 

- The ratio of the cross sections of vector mesons compared to that of the pO 
is approaching the expectations from SU(4) as Q2 increases. 

- The present measurements of the slopes of the vector mesons are not precise 
enough to conclude anything about the shrinkage question. 

- One would like to separate soft from hard interactions. However nothing is 
as soft as we would like nor as hard as we would like. There is an interplay of 
soft and hard processes at all values of Q2. As Q2 or any other scale increases, 
the amount of hard processes seems to increase. In order to resolve the hard 
processes one needs a good understanding of the soft fragmentation and 
hadronization. By combining various reactions one can try and extract the 
perturbative QCD part and to learn more about the interplay. 

- The energy behavior of the 7*P cross section shows that there is a smooth 
transition between the Q2 region where there is a mild energy dependence 
to that where the energy behavior is steeper. It happens somewhere in the 
region of about 1 GeV 2. Does this tell us where soft interactions turn into 
hard ones? In order to understand the structure of the dynamics, one has to 
isolate in the transition region the specific configurations in kT and PT for a 
better insight of what is happening. 
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